首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type-1 Diabetes (T1D) is the major autoimmune disease affecting the juvenile population in which insulin-producing pancreatic β-cells are destroyed by self-reactive T-cells and B-cells. Emerging studies have identified the presence of autoantibodies and altered T-cell reactivity against several autoantigens in individuals who are at risk of developing T1D even before the clinical onset of diabetes. Whilst these findings could lead to the development of predictive biomarkers for early diagnosis, growing evidence on the generation of neoepitopes, epitope spreading and diverse antigen repertoire in T1D poses a major challenge for developing approaches to induce antigen-specific tolerance. Mechanisms of neoepitope generation include post-translational modifications of existing epitopes, aberrant translational products, peptide fusion, and differences in MHC binding registers. Here, we focus our discussion on how post-translational modifications can give rise to immunogenic neoepitopes in T1D and present our perspective on how it could affect the development of therapeutic approaches to induce antigen-specific tolerance.  相似文献   

2.
The development of many autoimmune diseases has been etiologically linked to exposure to infectious agents. For example, a subset of patients with a history of Salmonella infection develop reactive arthritis. The persistence of bacterial antigen in arthritic tissue and the isolation of Salmonella or Yersinia reactive CD8+ T cells from the joints of patients with reactive arthritis support the etiological link between Gram-negative bacterial infection and autoimmune disease. Models proposed to account for the link between infection and autoimmunity include inflammation-induced presentation of cryptic self-epitopes, antigen persistence and molecular mimicry. Several studies support molecular mimicry as a mechanism for the involvement of class II epitopes in infectious disease-induced self-reactivity. Here, we have identified an immunodominant epitope derived from the S. typhimurium GroEL molecule. This epitope is presented by the mouse H2-T23-encoded class Ib molecule Qa-1 and was recognized by CD8+ cytotoxic T lymphocytes induced after natural infection. S. typhimurium-stimulated cytotoxic T lymphocytes recognizing the GroEL epitope cross-reacted with a peptide derived from mouse heat shock protein 60 and recognized stressed macrophages. Our results indicate involvement of MHC class Ib molecules in infection-induced autoimmune recognition and indicate a mechanism for the etiological link between Gram-negative bacterial infection and autoimmunity.  相似文献   

3.
Genes of the MHC show the strongest genetic association with multiple sclerosis (MS), but the underlying mechanisms have remained unresolved. In this study, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401, contribute to autoimmune CNS demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon back-crossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific type B T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific type B T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and type B T cells can escape the induction of T cell tolerance and may promote MS.  相似文献   

4.
Immunodominance refers to the phenomenon in which simultaneous T cell responses against multiple target epitopes organize themselves into distinct and reproducible hierarchies. In many cases, eliminating the response to the most dominant epitope allows responses to subdominant epitopes to expand more fully. The mechanism that drives immunodominance is still not well understood, although various hypotheses have been proposed. One of the more prevalent views is that immunodominance is driven by passive T cell competition for space on antigen presenting cells (APCs) or for access to specific MHC:epitope complexes on the surface of APCs. However, several experimental studies suggest that passive competition alone may not fully explain the robustness of immunodominance under physiological conditions or varying proportions of antigen-specific precursor T cells and APCs. These studies propose that a mechanism of active suppression among T cells gives rise to immunodominance.  相似文献   

5.
The majority of synaptic plasma membrane components are glycosylated. It is now widely accepted that this post-translational modification is crucial during the establishment, maintenance and function of the nervous system. Despite its significance, structural information about the glycosylation of nervous system specific glycoproteins is very limited. In the present study the major glycan structures of the chicken synaptic plasma membrane (SPM) associated glycoprotein glycans were determined. N-glycans were released by hydrazinolysis, labelled with 2-aminobenzamide, treated with neuraminidase and subsequently fractionated by size exclusion chromatography. Individual fractions were characterized by the combination of high-pressure liquid chromatography, exoglycosidase treatment or reagent array analysis method (RAAM). In addition to oligomannose-type glycans, core-fucosylated complex glycans with biantennary bisecting glycans carrying the LewisX epitope were most abundant. The overall chicken glycan profile was strikingly similar to the rat brain glycan profile. The presence of the LewisX determinant in relatively large proportions suggests a tissue-specific function for these glycans.  相似文献   

6.
Abs can tune the responses of Ag-specific T cells by influencing the nature of the epitope repertoire displayed by APCs. We explored the interaction between human self-reactive T cells and human monoclonal autoantibodies from combinatorial Ig-gene libraries derived from autoimmune thyroiditis patients and specific for the main autoantigen thyroid peroxidase (TPO). All human mAbs extensively influenced the T cell epitope repertoire recognized by different TPO-specific T cell clones. The action of the human mAbs was complex, because sometimes the same Ab suppressed or enhanced the epitopes recognized by the 10 different TPO-specific T cell clones. The human mAbs could modulate the epitope repertoire when TPO was added exogenously and when expressed constitutively on the surface of APCs. However, they could not unmask an immunodominant cryptic TPO epitope. In this study, we show that human autoantibodies influence the activity of self-reactive T cells and prove their relevance in concealing or exposing epitopes recognized by self-reactive T cells. However, our results further stress the biological significance of the immunodominant cryptic epitope we have defined and its potential importance in the evolution of autoimmunity.  相似文献   

7.
Knowing the abundance of peptides presented by MHC molecules is a crucial aspect for understanding T cell activation and tolerance. In this report we determined the relative abundance of four distinct peptide families after the processing of the model Ag hen egg-white lysozyme. The development of a sensitive immunochemical approach reported here made it possible to directly quantitate the abundance of these four epitopes presented by APCs, both in vitro and in vivo. We observed a wide range of presentation among these four different epitopes presented on the surface of APCs, with 250-fold differences or more between the most abundant epitope (48-63) and the least abundant epitopes. Importantly, we observe similar ratios of presentation from APCs in vitro as well as from APCs from the spleens and thymi of hen egg-white lysozyme transgenic mice. We discuss the relationship between the amount of peptide presented and their binding to I-A(k) molecules, immunogenicity, and tolerogenicity.  相似文献   

8.
The goal of this work was to evaluate the fate of APCs following interactions with T cells in unprimed mice with a normal T cell repertoire. We elaborated a model in which male adherent peritoneal mononuclear cells were injected into the foreleg footpads of naive female recipients mismatched for either minor or major histocompatibility Ags. At various times after injection, APC numbers in the draining (axillary and brachial) lymph nodes were assessed using a Ube1y gene-specific PCR assay. Our experimental model was designed so that the number of APCs expressing the priming epitope was similar to what is observed under real life conditions. Thus, early after injection, the frequency of afferent lymph-derived APCs expressing the priming epitope was in the range of 101-102/106 lymph node cells. We found that APCs presenting some, but not all, nonself epitopes were killed rapidly after entrance into the lymph nodes. Rapid elimination of APCs occurred following interactions with MHC class I-restricted, but not class II-restricted, T cells and was observed when APCs presented an immunodominant (B6dom1/H7a), but not a nondominant (HY), epitope. Killing of APCs was mediated partly, but not exclusively, by perforin-dependent process. We propose that killing of APCs by CTLs specific for immunodominant MHC class I-restricted epitopes may be instrumental in regulating the intensity, duration, and diversity of T cell responses.  相似文献   

9.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a chronic-progressive, immune-mediated CNS demyelinating disease and a relevant model of multiple sclerosis. Myelin destruction is initiated by TMEV-specific CD4(+) T cells targeting persistently infected CNS-resident APCs leading to activation of myelin epitope-specific CD4(+) T cells via epitope spreading. We examined the temporal development of virus- and myelin-specific T cell responses and acquisition of virus and myelin epitopes by CNS-resident APCs during the chronic disease course. CD4(+) T cell responses to virus epitopes arise within 1 wk after infection and persist over a >300-day period. In contrast, myelin-specific T cell responses are first apparent approximately 50-60 days postinfection, appear in an ordered progression associated with their relative encephalitogenic dominance, and also persist. Consistent with disease initiation by virus-specific CD4(+) T cells, CNS mononuclear cells from TMEV-infected SJL mice endogenously process and present virus epitopes throughout the disease course, while myelin epitopes are presented only after initiation of myelin damage (>50-60 days postinfection). Activated F4/80(+) APCs expressing high levels of MHC class II and B7 costimulatory molecules and ingested myelin debris chronically accumulate in the CNS. These results suggest a process of autoimmune induction in which virus-specific T cell-mediated bystander myelin destruction leads to the recruitment and activation of infiltrating and CNS-resident APCs that process and present endogenous myelin epitopes to autoreactive T cells in a hierarchical order.  相似文献   

10.
We have previously demonstrated that splenic B cells, transduced with peptide-IgG fusion proteins, are efficient tolerogenic APCs in vivo. Specific hyporesponsiveness to epitopes encoded in the peptide-IgG fusion protein has been achieved to over one dozen Ags, and clinical efficacy has been established in animal models for several autoimmune diseases and hemophilia. Previous studies also demonstrated that tolerance in this system requires MHC class II expression by the transduced B cells. Yet, the mechanisms of this B cell tolerogenic processing pathway remain unclear. In this study, we show that MHC class II molecules on tolerogenic B cells present epitopes derived from endogenous, but not exogenous (secreted), peptide-IgG fusion protein. These class II epitopes from the IgG fusion protein are processed in lysosomes/endosomes in an IFN-gamma-inducible lysosomal thiol reductase-dependent manner. We suggest that the MHC class II presentation of endogenously produced fusion protein epitopes represents a novel mechanism for tolerance induced by peptide-IgG-transduced B cells. An understanding of this process might provide insights into central and peripheral tolerance induced by other professional and nonprofessional APCs.  相似文献   

11.
The advent in recent years of the application of tetrameric arrays of class I peptide-MHC complexes now enables us to detect and study rare populations of Ag-specific CD8(+) T cells. However, available methods cannot visualize or determine the number and distribution of these TCR ligands on individual cells nor detect APCs in tissues. In this study, we describe for the first time studies of human class I peptide-MHC ligand presentation. These studies were facilitated by applying novel tools in the form of peptide-specific, HLA-A2-restricted human recombinant Abs directed toward a viral epitope derived from human T cell lymphotropic virus type I. Using a large human Ab phage display library, we isolated a large panel of recombinant Fab Abs that are specific for a particular peptide-MHC class I complex in a peptide-dependent, MHC-restricted manner. We used these Abs to visualize the specific complex on APCs and virus-infected cells by flow cytometry, to quantify the number of, and visualize in situ, a particular complex on the surface of APCs bearing complexes formed by naturally occurring active intracellular processing of the cognate viral Ag. These findings demonstrate our ability to transform the unique fine specificity, but low intrinsic affinity of TCRs into high affinity soluble Ab molecules endowed with a TCR-like specificity toward human viral epitopes. These molecules may prove to be crucial useful tools for studying MHC class I Ag presentation in health and disease as well as for therapeutic purposes in cancer, infectious diseases, and autoimmune disorders.  相似文献   

12.
The development of versatile vaccine platforms is a priority that is recognized by health authorities worldwide; such platforms should induce both arms of the immune system, the humoral and cytotoxic-T-lymphocyte responses. In this study, we have established that a vaccine platform based on the coat protein of papaya mosaic virus (PapMV CP), previously shown to induce a humoral response, can induce major histocompatibility complex (MHC) class I cross-presentation of HLA-A*0201 epitopes from gp100, a melanoma antigen, and from influenza virus M1 matrix protein. PapMV proteins were able to assemble into stable virus-like particles (VLPs) in a crystalline and repetitive structure. When we pulsed HLA-A*0201+ antigen-presenting cells (APCs) with the recombinant PapMV FLU or gp100, we noted that antigen-specific CD8+ T cells were highly reactive to these APCs, demonstrating that the epitope from the VLPs were processed and loaded on the MHC class I complex. APCs were preincubated with two different proteasome inhibitors, which did not affect the efficiency of peptide presentation on MHC class I. Classical presentation from an endogenous antigen was abolished in the same conditions. Clearly, antigen presentation mediated by the PapMV system was proteasome independent. Finally, PapMV-pulsed APCs had the capacity to expand highly avid antigen-specific T cells against the influenza virus M1 HLA-A*0201 epitope when cocultured with autologous peripheral blood mononuclear cells. This study demonstrates the potential of PapMV for MHC class I cross-presentation and for the expansion of human antigen-specific T cells. It makes VLPs from PapMV CP a very attractive platform to trigger cellular responses for vaccine development against chronic infectious diseases and cancers.  相似文献   

13.
We studied the mechanisms of antigen presentation of CD4 T cell epitopes of the capsular Caf1 antigen of Yersinia pestis using murine bone marrow macrophages as antigen presenting cells and T cell hybridomas specific for major histocompatibility complex (MHC) class II-restricted epitopes distributed throughout the Caf1 sequence. The data revealed diversity in the pathways used and the degrees of antigen processing required depending on the structural context of epitopes within the Caf1 molecule. Two epitopes in the carboxyl-terminal globular domain were presented by newly synthesized MHC class II after low pH-dependent lysosomal processing, whereas an epitope located in a flexible amino-terminal strand was presented by mature MHC class II independent of low pH and with no detectable requirement for proteolytic processing. A fourth epitope located between the two regions of Caf1 showed intermediate behavior. The data are consistent with progressive unfolding and cleavage of rCaf1 from the amino terminus as it traverses the endosomal pathway, the availability of epitopes determining which pool of MHC class II is preferentially loaded. The Caf1 capsular protein is a component of second generation plague vaccines and an understanding of the mechanisms and pathways of MHC class II-restricted presentation of multiple epitopes from this candidate vaccine antigen should inform the choice of delivery systems and adjuvants that target vaccines successfully to appropriate intracellular locations to induce protective immune responses against as wide a T cell repertoire as possible.  相似文献   

14.
The advent in recent years of the application of tetrameric arrays of class I peptide-MHC complexes now enables us to detect and study rare populations of antigen-specific CD8+ T cells. However, available methods cannot visualize or determine the number and distribution of these TCR ligands on individual cells or detect antigen-presenting cells (APCs) in tissues. Here we describe a new approach that enables study of human class I peptide-MHC ligand-presentation as well as TCR-peptide-MHC interactions. Such studies are facilitated by applying novel tools in the form of peptide-specific, HLA-A2-restricted human recombinant antibodies directed toward a large variety of tumor-associated as well as viral T-cell epitope peptides. Using a large human antibody phage display library, a large panel of recombinant antibodies that are specific for a particular peptide-MHC class I complex in a peptide-dependent, MHC-restricted manner was isolated. These antibodies were used to directly visualize the specific MHC-peptide complex on tumor cells, antigen-presenting cells or virus-infected cells by flow cytometry. They enabled direct quantitation of the number of MHC-peptide complexes as well as in situ detection of the complex on the surface of APCs after naturally occurring active intracellular processing of the cognate antigen. These studies will enable also the development of a new class of targeting molecules to deliver drugs or toxins to tumor or virus-infected cells. Thus, we demonstrate our ability to transform the unique fine specificity but low intrinsic affinity of TCRs into high-affinity soluble antibody molecules endowed with a TCR-like specificity toward human tumor or viral epitopes. These molecules may prove to be crucial useful tools for studying MHC class I antigen presentation in health and disease as well as for therapeutic purposes in cancer, infectious diseases and autoimmune disorders.  相似文献   

15.
The cell-mediated adaptive immune response depends upon the activation of T cells via recognition of antigen in the context of a major histocompatibility complex (MHC) molecule. Although studies have shown that alterations in T cell receptor glycosylation reduces the activation threshold, the data on MHC is far less definitive. Here, we discuss the data on MHC glycosylation and the role the glycans might play during the adaptive host response.  相似文献   

16.
The heavy glycosylation of HIV-1 envelope gp120 shields this important Ag from recognition by neutralizing Abs and cytolytic CD8 T cells. However, very little work has been done to understand the influence of glycosylation on the generation of gp120 epitopes and their recognition by MHC class II-restricted CD4 T cells. In this study, three conserved glycans (linked to N406, N448, and N463) flanking the C4 region of gp120 that contains many known CD4 T cell epitopes were disrupted individually or in combination by asparagine-to-glutamine substitutions. The mutant proteins lacking the N448 glycan did not effectively stimulate CD4 T cells specific for the nearby C4 epitopes, although the same mutants were recognized well by CD4 T cells specific for epitopes located in the distant C1 and C2 regions. The loss of recognition was not due to amino acid substitutions introduced to the mutant proteins. Data from trypsin digestion and mass spectrometry analyses demonstrated that the N448 glycan removal impeded the proteolytic cleavage of the nearby C4 region, without affecting more distant sites. Importantly, this inhibitory effect was observed only in the digestion of the native nondenatured protein and not in that of the denatured protein. These data indicate that the loss of the N448 glycan induces structural changes in the C4 region of gp120 that make this specific region more resistant to proteolytic processing, thereby restricting the generation of CD4 T cell epitopes from this region. Hence, N-linked glycans are critical determinants that can profoundly influence CD4 T cell recognition of HIV-1 gp120.  相似文献   

17.
CD4+ T cells that are activated by a MHC class II/peptide encounter can induce maturation of APCs and promote cytotoxic CD8+ T cell responses. Unfortunately, the number of well-defined tumor-specific CD4+ T cell epitopes that can be exploited for adoptive immunotherapy is limited. To determine whether Th cell responses can be generated by redirecting CD4+ T cells to MHC class I ligands, we have introduced MHC class I-restricted TCRs into postthymic murine CD4+ T cells and examined CD4+ T cell activation and helper function in vitro and in vivo. These experiments indicate that Ag-specific CD4+ T cell help can be induced by the engagement of MHC class I-restricted TCRs in peripheral CD4+ T cells but that it is highly dependent on the coreceptor function of the CD8beta-chain. The ability to generate Th cell immunity by infusion of MHC class I-restricted Th cells may prove useful for the induction of tumor-specific T cell immunity in cases where MHC class II-associated epitopes are lacking.  相似文献   

18.
Indirect allorecognition occurs when T cells recognize donor MHC presented as peptide epitopes by recipient APC, but the precise nature of the epitopes involved remains unclear. Rejection of rat MHC class I-disparate PVG.R8 (RT1.A(a)) grafts by PVG.RT1(u) (RT1.A(u)) recipients is mediated by indirectly restricted CD4 T cells that provide help for the generation of alloantibody. In this study, epitope mapping was performed using a functionally relevant readout (alloantibody production) to identify key peptides that prime an indirect alloimmune response, leading to graft rejection. PVG.RT1(u) rats were immunized with a series of overlapping 15-mer peptides (peptides 1-18) that spanned the alpha1 and alpha2 domains of the RT1.A(a) molecule. Several peptides were able to accelerate both the alloantibody response to the intact RT1.A(a) Ag and PVG.R8 heart graft rejection. An immunodominant epitope was identified within the hypervariable region of the alpha1 domain. Fine mapping of this region with a second series of peptides overlapping by single amino acids confirmed the presence of an eight-amino acid core determinant. Additional "subdominant" epitopes were identified, two of which were located within regions of amino acid homology between the RT1.A(a) and RT1.A(u) molecules and not, as had been expected, within other hypervariable regions. The contribution of self-epitopes to indirect allorecognition was emphasized by the demonstration that i.v. administration of a 15-mer peptide encompassing one of the subdominant self-determinants diminished the recipient's ability to mount an alloantibody response on challenge with intact A(a) alloantigen. Our findings suggest that cryptic self-epitopes recognized by autoreactive T cells may contribute to allograft rejection and should be considered when designing novel strategies for inducing tolerance to alloantigen.  相似文献   

19.
MHC class II (MHC II)-restricted T cell responses are a common driving force of autoimmune disease. Accordingly, numerous therapeutic strategies target CD4(+) T cells with the hope of attenuating autoimmune responses and restoring self-tolerance. We have previously reported that i.v. treatment with Ag-pulsed, ethylenecarbodiimide (ECDI)-fixed splenocytes (Ag-SPs) is an efficient protocol to induce Ag-specific tolerance for prevention and treatment of experimental autoimmune encephalomyelitis (EAE). Ag-SPs coupled with peptide can directly present peptide:MHC II complexes to target CD4(+) T cells in the absence of costimulation to induce anergy. However, Ag-SPs coupled with whole protein also efficiently attenuates Ag-specific T cell responses suggesting the potential contribution of alternative indirect mechanisms/interactions between the Ag-SPs and target CD4(+) T cells. Thus, we investigated whether MHC II compatibility was essential to the underlying mechanisms by which Ag-SP induces tolerance during autoimmune disease. Using MHC-deficient, allogeneic, and/or syngeneic donor Ag-SPs, we show that MHC compatibility between the Ag-SP donor and the host is not required for tolerance induction. Interestingly, we found that ECDI treatment induces apoptosis of the donor cell population which promotes uptake and reprocessing of donor cell peptides by host APCs resulting in the apparent MHC II-independent induction of tolerance. However, syngeneic donor cells are more efficient at inducing tolerance, suggesting that Ag-SPs induce functional Ag-SP tolerance via both direct and indirect (cross-tolerance) mechanisms leading to prevention and effective treatment of autoimmune disease.  相似文献   

20.
E Mozes  M Dayan  E Zisman  S Brocke  A Licht    I Pecht 《The EMBO journal》1989,8(13):4049-4052
MHC gene products present antigenic epitopes to the antigen receptor on T cells. Nevertheless, direct binding of such epitopes to MHC class II proteins on normal living antigen-presenting cells (APCs) has not yet been demonstrated. We have previously shown a significant difference in the ability of T cells of myasthenia gravis (MG) patients to proliferate in response to the synthetic peptide p195-212 of the human acetylcholine receptor (AChR) alpha-subunit in comparison to healthy controls. The observed proliferative responses correlated significantly with HLA-DR5. Moreover, lymph node cells of various mouse strains that were primed with the T cell epitope, p195-212, were found to proliferate to different extents. To investigate these observations further, we designed an assay for direct binding of p195-212 to MHC class II proteins on the surface of freshly prepared splenic adherent cells. Binding of a biotinylated p195-212 was monitored using phycoerythrin-avidin by flow cytometry. Fifteen to sixty per cent of the cells were labeled following incubation with the biotinylated peptide. Binding was observed only to splenic adherent cells derived from mouse strains of which T cells were capable of proliferating in response to p195-212. The binding specificity, in terms of epitope structure and its site of interaction on the cells, was shown by its inhibition with an excess of the unlabeled peptide or with the relevant monoclonal anti-I-A antibodies. These results constitute the first direct evidence for the specific binding of a T cell epitope to live APC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号