首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report the synthesis of new PNA monomers for pseudocomplementary PNA (pcPNA) that are fully compatible with standard Fmoc chemistry. The thiocarbonyl group of the 2-thiouracil (sU) monomer was protected with the 4-methoxy-2-methybenzyl group (MMPM), while the exocyclic amino groups of diaminopurine (D) were protected with Boc groups. The newly synthesized monomers were incorporated into a 10-mer PNA oligomer using standard Fmoc chemistry for solid-phase synthesis. Oligomerization proceeded smoothly and the HPLC and MALDI-TOF MS analyses indicated that there was no remaining MMPM on the sU nucleobase. The new PNA monomers reported here would facilitate a wide range of applications, such as antigene PNAs and DNA nanotechnologies.  相似文献   

2.
The preparation of t-butoxycarbonyl (Boc)-protected O(4)-(o-nitrophenyl) thymine peptide nucleic acid (PNA) monomer is described. This PNA monomer was incorporated into PNA oligomer sequences. The post-synthetic modification of the oligomers to yield fluorescently-labelled PNA oligomers was studied before and after the removal of the protecting groups. In both cases, the desired fluorescently-labelled PNA oligomer was obtained in good yields.  相似文献   

3.
Introduction of methylene bridges in aegPNA and apgPNA molecules give rise to cyclic five and six membered ring structures. Synthesis of a new six membered cyclic PNA monomer, aminopipecolyl PNA (pipPNA) is reported. Incorporation of pipPNA into PNA oligomers and comparative binding with target DNA sequences is studied.  相似文献   

4.
The synthesis of N-((N4-(benzoyl)cytosine-1-yl)acetyl)- N -(2-Boc-aminoethyl)glycine (CBz) and the incorporation of this monomer into PNA oligomers are described. A single CBzresidue within a 10mer homopyrimidine PNA is capable of switching the preferred binding mode from a parallel to an antiparallel orientation when targeting a deoxyribonucleotide sequence at neutral pH. The resulting complex has a thermal stability equal to that of the corresponding PNA-DNA duplex, indicative of a strong destabilization of Hoogsteen strand PNA binding due to steric interference by the benzoyl moieties. Accordingly, incorporation of the CBz residue into linked PNAs (bis-PNAs) results in greatly reduced thermal stability of the formed PNA:DNA complexes. Thus, incorporation of the CBz monomer could eliminate the stability bias of triplex-forming sequences in PNA used in hybridization arrays and combinatorial library formats. Furthermore, it is shown that the benzoyl moiety does not severely interfere with Watson-Crick hydrogen bonding, thereby presenting an interesting route for novel cytosine modifications.  相似文献   

5.
Introduction of methylene bridges in aegPNA and apgPNA molecules give rise to cyclic five and six membered ring structures. Synthesis of a new six membered cyclic PNA monomer, aminopipecolyl PNA (pipPNA) is reported. Incorporation of pipPNA into PNA oligomers and comparative binding with target DNA sequences is studied.  相似文献   

6.
A novel approach to the introduction of chirality into peptide nucleic acid (PNA) by replacement of the methylene carbonyl linker by an alpha-amino acid derived moiety is described. A monomer compatible with Fmoc-based oligomerization chemistry possessing an L-serine derived linker has been synthesized and incorporated into PNA oligomers. A single, central substitution in a hexathymine PNA strongly destabilized triple helix formation whereas a central substitution in a mixed sequence is much better tolerated. We have investigated the influence of this substitution on the selectivity for strand composition (DNA versus RNA complement) and strand orientation (antiparallel versus parallel) in the context of duplex formation. A PNA 11-mer with a single substitution demonstrates a preference for an antiparallel RNA complement, as judged by thermal denaturation analysis of the complexes.  相似文献   

7.
8.
PNA technology     
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.  相似文献   

9.
Peptide nucleic acids (PNA) are one of many synthetic mimics of DNA and RNA that have found applications as biological probes, as nano-scaffold components, and in diagnostics. In an effort to use PNA as constructs for cellular delivery we investigated the possibility of installing a biologically susceptible disulfide bond in the backbone of a PNA oligomer. Here we report the synthesis of a new abasic Fmoc monomer containing a disulfide bond that can be incorporated into a PNA oligomer (DS-PNA) using standard solid phase peptide synthesis. The disulfide bond survives cleavage from the resin and DS-PNA forms duplexes with complementary PNA oligomers. Initial studies aimed at determining if the disulfide bond is cleavable to reducing agents while in a duplex are explored using UV thermal analysis and HPLC.  相似文献   

10.
Abstract

Peptide nucleic acid (PNA) is an oligonucleotide mimic in which the backbone of DNA has been replaced by a pseudopeptide. We here show that there are distinct variations as to how PNA oligomers interact with double-stranded DNA depending on choice of nucleobases. Thymine-rich homopyrimidine PNA oligomers recognise double-stranded polynucleotides by forming PNA2-DNA triplexes with the DNA purine strand. By contrast, cytosine-rich homopyrimidine PNAs add to double-stranded polynucleotides as Hoogsteen strands, forming PNA-DNA2 triplexes, while homopurine, or alternating thymine-guanine, PNA oligomers invade DNA to form PNA-DNA duplexes.  相似文献   

11.
We have investigated the incorporation of C6-derivatives of uracil into polypyrimidine peptide nucleic acid oligomers (PNA). Starting with orotic acid (uracil-6-carboxylic acid) we have prepared a PNA monomer containing the methyl orotate nucleobase which is compatible with Fmoc-based synthesis. Treatment of the resin-bound oligomers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing PNA. Alternatively, the methyl orotate-containing PNA was liberated from the resin by standard acidolysis. PNA bearing a modified nucleobase was found to hybridize to both poly(rA) and poly(dA). Complexes with poly(rA) were more stable than those with poly(dA) but both were destabilized relative to an unmodified PNA. Modification of a terminal residue was tolerated better than modification of an internal position. The type of charge provided by the modification affected the complex stability. In the worst case, an internal modification was nearly as detrimental as a base mismatch.  相似文献   

12.
Peptide nucleic acids (PNAs) make a promising group of DNA analogues. The backbone of typical PNA oligomers is composed of N-(2-aminoethyl)glycine units, linked by the peptide bonds. The backbone secondary amine groups are acylated with carboxyalkyl derivatives of nucleobases. One of the PNA synthesis step causing some problems is the acylation of the monomer backbone with the nucleobase derivatives. The aim of the study was to compare the efficiency of various coupling systems in the acylation. Simple model compounds (piperidine and proline) were used, as well as equimolar amounts of the coupling reagents. Selected systems based on carbodiimides, aminium or phosphonium salts, mixed anhydride, and active esters were tested.  相似文献   

13.
We have investigated the incorporation of C6-derivatives of uracil into polypyrimidine peptide nucleic acid oligomers (PNA). Starting with orotic acid (uracil-6-carboxylic acid) we have prepared a PNA monomer containing the methyl orotate nucleobase which is compatible with Fmoc-based synthesis. Treatment of the resin-bound oligomers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing PNA. Alternatively, the methyl orotate-containing PNA was liberated from the resin by standard acidolysis. PNA bearing a modified nucleobase was found to hybridize to both poly(rA) and poly(dA). Complexes with poly(rA) were more stable than those with poly(dA) but both were destabilized relative to an unmodified PNA. Modification of a terminal residue was tolerated better than modification of an internal position. The type of charge provided by the modification affected the complex stability. In the worst case, an internal modification was nearly as detrimental as a base mismatch.  相似文献   

14.
Summary The preparation of the thymine peptide nucleic acid (PNA) monomer carrying a 2-nitrophenyl group in position 4 is described. This monomer is incorporated into PNA oligomers and reacted with amines to yield PNA oligomers carrying 5-methylcytosine derivatives. During the deprotection-modification step two side reactions were detected: degradation of PNA oligomer from theN-terminal residue and modification ofN 4-tert-butylbenzoyl cytosine residue. Protection of theN-terminal position and the use ofN 4-acetyl group for the protection of cytosine eliminate these side reactions.  相似文献   

15.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

16.
Synthesis and properties of DNA-PNA chimeric oligomers.   总被引:1,自引:0,他引:1       下载免费PDF全文
Adenine, thymine and cytosine PNA monomers have been prepared using 3-amino-1,2-propanediol as a starting material. The benzoyl group was used to protect the exocyclic amines of the heterocyclic bases of A and C PNA monomers and the backbone primary amine was protected with the monomethoxytrityl group. The thymine and cytosine PNA monomers were used in conjunction with standard DNA synthesis monomers to produce chimeric PNA DNA (PDC) oligomers. Ultraviolet melting studies confirmed that these oligomers form stable hybrids with complementary DNA strands and that mismatches in the DNA but more so in the PNA sections lead to duplex destabilisation.  相似文献   

17.
Abstract

Different modified PNA-DNA dimer-analogous synthons (I and II) were synthesized as phosphoramidites. These dimer units were assembled by a 5′-modified deoxythymidine and a modified PNA monomer. These synthons were used in the routine coupling procedure for oligonucleotides. Therefore no PNA coupling chemistry is necessary to synthesize PNA-DNA chimeric oligonucleotides. Various deoxyoligonucleotides were synthesized introducing the dimer blocks I and II at different positions in the sequences. Melting temperatures of the modified oligonucleotides with their complementary DNA analogues were determined.

Backbone modifications of oligonucleotides are required in the antisense strategy for protection against endonucleolytic cleavage in biological environment. Peptide nucleic acids (PNA fragments) are known to be nuclease resistant analogues, which show stable and discriminating hybridization. For this reason we prepared chimeric PNA-DNA oligomers by incorporation of two different modified PNA-DNA dimer blocks (Scheme A) into oligonucleotides. Melting temperatures of the modified oligonucleotides with their complementary DNA were determined.  相似文献   

18.
A novel peptide nucleic acid (PNA) analogue is designed with a constraint in the aminoethyl segment of the aegPNA backbone so that the dihedral angle β is restricted within 60–80°, compatible to form PNA:RNA duplexes. The designed monomer is further functionalized with positively charged amino-/guanidino-groups. The appropriately protected monomers were synthesized and incorporated into aegPNA oligomers at predetermined positions and their binding abilities with cDNA and RNA were investigated. A single incorporation of the modified PNA monomer into a 12-mer PNA sequence resulted in stronger binding with complementary RNA over cDNA. No significant changes in the CD signatures of the derived duplexes of modified PNA with complementary RNA were observed.  相似文献   

19.
The preparation of a novel phosphoramidite monomer based on thyminyl acetic acid coupled to the secondary nitrogen of 2-(2-amino-ethylamino)ethanol is described. This monomer can be used to attach a deoxynucleotide to the carboxy terminus of a PNA oligomer by solid-phase synthesis. The resulting PNA primer is recognized as a substrate by various DNA polymerases.  相似文献   

20.
Peptide nucleic acid (PNA) is a DNA analog able to form hybridization complexes with complementary DNA or RNA strands. Many PNAs have been described in recent years, particularly chiral PNA analogs. Chiral heteronucleotide ONA (Orn backbone PNA) is an important tool in the antisensing field, but was not been fully explored yet. In the present work, we performed studies toward the synthesis of chiral heteronucleotide ONA sequences by utilizing a Fmoc/Boc-based submonomer approach on solid support. The desired oligomers with different nucleic content and length were obtained in very good yields and high purity. Specific binding to the complimentary ssDNA oligomers was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号