首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mutations in a site, glnF, linked by P1-mediated transduction of argG on the chromosome of Klebsiella aerogenes, result in a requirement for glutamine. Mutants in this gene have in all media a level of glutamine synthetase (GS) corresponding to the level found in the wild-type strain grown in the medium producing the strongest repression of GS. The adenylylation and deadenylylation of GS in glnF mutants is normal. The glutamine requirement of glnF mutants could be suppressed by mutations in the structural gene for GS, glnA. These mutations result in altered regulation of GS synthesis, regardless of the presence or absence of the glnF mutation (GlnR phenotype). In GlnR mutants the GS level is higher than in the wild-type strain when the cells are cultured in strongly repressing medium, but lower than in the wild-type strain when cells are cultured in a derepressing medium. Heterozygous merodiploids carrying a normal glnA gene as well as a glnA gene responsible for the GlnR phenotype behave in every respect like merodiploids carrying two normal glnA genes. These results confirm autogenous regulation of GS synthesis and indicate that GS is both a repressor and an activator of GS synthesis. The mutation in glnA responsible for the GLnR phenotype has apparently resulted in the formation of a GS that is incompetent both as repressor and as activator of GS synthesis. According to this hypothesis, the product of the glnF gene is necessary for activation of the glnA gene by GS.  相似文献   

4.
5.
6.
7.
8.
9.
10.
We have isolated three strains of Klebsiella aerogenes that failed to show repression of glutamine synthetase even when grown under the most repressing conditions for the wild-type strain. These mutant strains were selected as glutamine-independent derivatives of a strain that is merodiploid for the glnA region and contains a mutated glnF allele. The mutation responsible for the Gln+ phenotype in each strain was tightly linked to glnA, the structural gene for glutamine synthetase, and was dominant to the wild-type allele. These mutations are probably lesions in the control region of the glnA gene, since each mutation was cis-dominant for constitutive expression of the enzyme in hybrid merodiploid strains. Strains harboring this class of mutations were unable to produce a high level of glutamine synthetase unless they also contained an intact glnF gene, and unless cells were grown in derepressing medium. This study supports the idea that the glnA gene is regulated both positively and negatively, and that the deoxyribonucleic acid sites critical for positive control and negative control are functionally distinct.  相似文献   

11.
Mutations at two sites of the Klebsiella aerogenes chromosome, unlinked by transduction with phages PW52 and P1, result in the lack of enzymatically active glutamine synthetase. A mutation in the glnB site leads to a marked decrease in the formation of an apparently normal enzyme. Some of the mutations in the glnA site lead to the production of enzymatically inactive material capable of reacting with anti-glutamine synthetase serum. The revertant of a glnA mutant was found to produce a glutamine synthetase with less activity and less stability to heat than the enzyme of the wild type. These results locate the structural gene to the production of enzymatically inactive glutamine synthetase antigen, not subject to repression by exogenously added ammonia. This observation suggests that glutamine synthetase is itself involved in the regulation of the synthesis of glutamine synthetase.  相似文献   

12.
13.
14.
Genetic control of glutamine synthetase in Klebiella aerogenes.   总被引:7,自引:45,他引:7       下载免费PDF全文
Mutations at two sites, glnA and glnB, of the Klebsiella aerogenes chromosome result in the loss of glutamine synthetase. The locations of these sites on the chromosome were established by complementation by episomes of Escherichia coli and by determination of their linkage to other genetic sites by transduction with phage P1. The glnB gene is located at a position corresponding to 48 min on the Taylor map of the E. coli chromosome; it is linked to tryA, nadB, and GUA. The glnA gene is at a position corresponding to 77 min on the Taylor map and is linked to rha and metB; it is also closely linked to rbs, located in E. coli at 74 min, indicating a difference in this chromosomal region between E. coli and K. aerogenes. Mutations in the glnA site can also lead to nonrepressible synthesis of active glutamine synthetase. The examination of the fine genetic structure of glnA revealed that one such mutation is located between two mutations leading to the loss of enzymatic activity. This result, together with evidence that the structural gene for glutamine synthetase is at glnA, suggests that glutamine synthetase controls expression of its own structural gene by repression.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号