首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transforming protein of polyomavirus, middle T (mT), forms a complex with two cellular enzymes: the protein tyrosine kinase pp60c-src and a phosphatidylinositol (PtdIns) 3-kinase. A mutant virus, Py1178T, encodes an mT protein which associates with and activates pp60c-src to the same extent as the wild type but fails to associate with PtdIns 3-kinase. To investigate relationships between activation of pp60c-src, association of PtdIns 3-kinase, and cellular levels of the second messenger inositol 1,4,5-trisphosphate (InsP3), we examined the effects of wild-type and mutant mT proteins on inositol metabolism in rat and mouse fibroblasts. Expression of either wild-type or 1178T mT caused a 300 to 500% increase in the InsP3 level. Cells transformed by Rous sarcoma virus also showed similar increases in InsP3 levels. Mutant mT proteins which failed to activate pp60c-src (NG59 and 1387T) had no effect on InsP3 levels. Pulse-chase experiments with [3H]inositol showed that the turnover of phosphoinositides was increased in cells transformed by either wild-type polyomavirus or Py1178T as compared with the normal parent cell line. The turnover of inositol phosphates was unchanged upon transformation. These data indicate that cells expressing either wild-type or mutant 1178T mT or pp60v-src exhibit elevated levels of InsP3 because of activation of phospholipase C. This activation appears to depend, directly or indirectly, upon activation of pp60src protein kinase activity. Activation of pp60c-src and elevation of InsP3 content are not sufficient for full transformation. Full transformation also requires the association of mT-pp60c-src complexes with PtdIns 3-kinase.  相似文献   

2.
Reconstitution of the polyoma virus middle T antigen (mT)-pp60-src complex and phosphatidylinositol 3-kinase (PtdIns 3-kinase) has been accomplished in vitro with immunopurified baculovirus-expressed mT-pp60c-src and PtdIns 3-kinase purified from rat liver. Both the 110- and 85-kDa subunits of the PtdIns 3-kinase associated with the mT-pp60c-src complex. The association of PtdIns 3-kinase with the mT-pp60c-src complex was dependent on the protein-tyrosine kinase activity of pp60c-src as a kinase-inactive mutant (pp60(295c-src)) still complexed with mT, but the mT-pp60(295c-src)) complex was unable to bind PtdIns 3-kinase. The mT-pp60c-src complex phosphorylated both subunits of PtdIns 3-kinase on tyrosine residues. The immunopurified mT-pp60c-src complex also associated with PtdIns 3-kinase activity from whole cell lysates, and this association was dependent upon the protein-tyrosine kinase activity of pp60c-src. Comparison of 35S-labeled proteins from whole cell lysates which associated with immunopurified mT-pp60c-src and mT-pp60(295c-src) revealed proteins of 110 and 85 kDa as the major peptides dependent on protein-tyrosine kinase activity for association with the complex. In addition, a synthetic phosphopeptide (13-mer) containing sequences conserved between the major tyrosine phosphorylation site of murine polyoma virus mT, hamster polyoma virus mT, and the insulin receptor substrate (IRS-1) specifically blocked the association of the 85- and 110-kDa polypeptides with the mT-pp60c-src complex. The ability to block the association was dependent on the tyrosine phosphorylation of the peptide. Association of PtdIns 3-kinase activity was blocked concurrently. This is the first demonstration that the 110-kDa subunit of PtdIns 3-kinase can associate with mT-pp60c-src. This association in vitro is a step toward understanding protein-protein interactions important in the signal transduction pathway of oncogenic proteins.  相似文献   

3.
We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.  相似文献   

4.
Phosphoinositide kinase activity and transformation   总被引:1,自引:0,他引:1  
We have used the DNA tumor virus polyoma as a model system to examine whether the phosphatidylinositol (PI) turnover pathway is a critical target for transforming gene products. Polyoma-infected cells show elevated levels of polyphosphoinositides and polyphosphoinositols, and a PI kinase activity is associated with middle T antigen, a transforming gene product of polyoma virus. In anti-T immunoprecipitates from polyoma-infected or -transformed cells, comparisons of wild-type and polyoma mutants defective for transformation show a strong correlation between middle T-associated PI kinase activity and transforming ability. Middle T has previously been found to associate at the plasma membrane with pp60 c-src and to activate it as a tyrosine kinase. c-src itself does not appear to phosphorylate PI; however, the middle T/pp60 c-src tyrosine kinase activity may be important for activation of PI kinase. Ammonium orthovanadate, a tyrosine phosphatase inhibitor, elevates the middle T/pp60 c-src-associated PI kinase activity. We propose that middle T/pp60 c-src activates a PI kinase and modulates PI turnover in vivo by tyrosine phosphorylation.  相似文献   

5.
S A Courtneidge  A Heber 《Cell》1987,50(7):1031-1037
It has previously been shown that a proportion of middle T antigen molecules exist in a stable complex with pp60c-src. Here we show that there appears to be a third component to the complex, a protein of molecular mass 81 kd (p81). p81 was phosphorylated exclusively on tyrosine residues in kinase assays performed using immunoprecipitates from polyoma virus-transformed cells and antibodies to both middle T and pp60c-src, and was also detected when immunoprecipitates were made from lysates of 32P-labeled cells. p81 was bound to middle T and pp60c-src in cell lines containing transforming mutants of middle T, but not (in phosphorylated form) to all nontransforming mutants. A parallel investigation of phosphatidylinositol kinase activity in immune complexes containing these middle T mutants revealed a complete coincidence between the presence of p81 and phosphatidylinositol kinase activity. We therefore suggest that p81 is a phosphatidylinositol kinase.  相似文献   

6.
The transforming protein of polyoma virus, middle T antigen, associates with the protein tyrosine kinase pp60c-src, and analysis of mutants of middle T suggests that this complex plays an important role in transformation by polyoma. It has recently been reported that pp60c-src from polyoma virus-transformed cells has enhanced tyrosine kinase activity in vitro. The data presented here confirm these findings and show that the enhanced kinase activity of pp60c-src is due to an increase in the Vmax of the enzyme. Sucrose density gradient analysis demonstrates that only the form of pp60c-src which is bound to middle T antigen is activated. The difference in enzyme activity between pp60c-src from normal and middle T-transformed cells is more marked when the enzyme is prepared from lysates containing the phosphotyrosine protein phosphatase inhibitor, sodium orthovanadate. pp60c-src from middle T transformed cells is unaffected, but pp60c-src from normal cells has reduced kinase activity if dephosphorylation is prevented. The kinase activity of pp60c-src thus appears to be regulated by its degree of phosphorylation at tyrosine, and data are presented which support this hypothesis. pp60c-src is the first example of a protein tyrosine kinase whose activity is inhibited by phosphorylation at tyrosine. Middle T antigen may increase the kinase activity of pp60c-src by preventing phosphorylation at this regulatory site.  相似文献   

7.
Medium T antigen, the transforming protein of polyoma virus, is associated with pp60c-src and strongly activates its tyrosine-specific protein kinase activity. We investigated whether the medium T-pp60c-src complex is also associated with an activity that phosphorylates the membrane phospholipid phosphatidylinositol, as shown for pp60v-src and p68v-ros, the transforming proteins of Rous sarcoma virus and avian sarcoma virus UR2, respectively. Medium T was purified by affinity chromatography from extracts of polyoma virus-infected mouse fibroblasts. It was bound to antibodies against a peptide corresponding to the carboxy terminus of medium T and released from the immune complex with an excess of the same peptide. In a second step, the partially purified medium T was bound to antibodies against another peptide corresponding to an internal region of medium T and released with excess peptide. Further purification was carried out with a monoclonal antibody against pp60c-src. Samples from each purification step were examined for protein kinase and phosphatidylinositol kinase activity. The highly purified preparations of the medium T-pp60c-src complex showed very low levels of phosphatidylinositol kinase activity, and no difference between medium T from transforming viruses and nontransforming hr-t mutants was detected. In contrast, protein kinase activity was associated with medium T purified from transforming viruses but not from hr-t mutants.  相似文献   

8.
Substitution of phenylalanine for tyrosine 315 of the polyoma virus middle T (mT) protein lowers the incidence and limits the spectrum of tumors induced following inoculation of the virus into newborn mice. This substitution removes the major site of phosphorylation by pp60c-src without altering the ability of mT to associate with or to activate pp60c-src. The mutant mT fails to show binding of a phosphatidylinositol 3-kinase (Ptdlns 3-kinase) activity that is normally present in wild-type mT complexes. Furthermore, an anti-peptide antiserum that specifically recognizes mT lacking phosphate at tyrosine 315 precipitates binary (mT-pp60c-src) but not ternary (mT-pp60c-src-Ptdlns 3-kinase) complexes from wild-type infected cell extracts. Reprecipitation with either anti-pp60c-src or anti-mT serum brings down ternary complexes containing mT phosphorylated on tyrosine 315. Phosphorylation of mT by pp60c-src in vivo is therefore a critical event for binding of Ptdlns 3-kinase and for expression of the full tumorigenic potential of the virus.  相似文献   

9.
Stimulation of protein kinase C in polyoma virus-transformed cells increased the phosphorylation of tyrosine residues of the viral middle T (mT) antigen in mT:pp60c-src complexes precipitated by anti-mT antibodies. This increase might have been due to a stimulation of the complex's pp60c-src tyrosine kinase activity or to an increased ability of the mT protein to be phosphorylated by pp60c-src. These observations suggest that cellular protein kinase C might control the ability of polyoma virus to transform its host cell.  相似文献   

10.
Phosphatidylinositol (PtdIns) kinase activities from non-transformed and polyoma-middle-T-transformed murine fibroblasts were examined. Both normal and transformed 3T3 fibroblasts have two PtdIns kinases, which can be separated by anion-exchange chromatography. One of these activities (Type I) has a Km for ATP of 10 microM, is resistant to inhibition by adenosine, AMP or ADP, and is inhibited by non-ionic detergents. The other activity (Type II) has a somewhat higher Km for ATP (35 microM) and is inhibited competitively by ADP, AMP and adenosine at concentrations suggesting regulation of this activity by the energy charge of the cell. The Type II PtdIns kinase is activated by non-ionic detergents. We have previously reported the specific association of a PtdIns kinase activity with polyoma-middle-T immunoprecipitates [Whitman, Kaplan, Schaffhausen, Cantley & Roberts (1985) Nature (London) 315, 239-242; Kaplan, Whitman, Schaffhausen, Raptis, Garcea, Pallas, Roberts & Cantley (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3624-3628]. Comparison of the immunoprecipitated PtdIns kinase with the activities identified by ion-exchange chromatography indicates that it is the Type I enzyme which specifically associates with the middle-T/pp60c-src complex. This PtdIns kinase activity is separable from both middle T and pp60c-src. Type I PtdIns kinase also associates with pp60v-src immunoprecipitates from Rous-sarcoma-virus-transformed cells. Furthermore, this PtdIns kinase appears to co-precipitate with partially purified platelet derived growth factor (PDGF) receptor. The amount of this activity found in anti-phosphotyrosine immunoprecipitates or in wheat-germ-lectin-agarose precipitates is increased 50-fold by stimulation of quiescent Balb/C 3T3 fibroblasts with PDGF. These results suggest that the Type I PtdIns kinase is regulated by agents which affect cell growth and transformation, whereas the Type II PtdIns kinase may be regulated by the local [ATP]/[ADP] ratio.  相似文献   

11.
In polyomavirus-transformed cells, pp60c-src is activated by association with polyomavirus middle T antigen. These complexes have a higher tyrosine kinase activity compared with that of unassociated pp60c-src. Genetic analyses have revealed that the carboxy-terminal 15 amino acids of pp60c-src and the amino-terminal half of middle T antigen are required for this association and consequent activation of the tyrosine kinase. To define in greater detail the borders of the domain in middle T antigen required for activation of pp60c-src, we constructed a set of unidirectional amino-terminal deletion mutants of middle T antigen. Analysis of these mutants revealed that the first six amino acids of middle T antigen are required for it to activate the kinase activity of pp60c-src and to transform Rat-1 fibroblasts. Analysis of a series of insertion and substitution mutants confirmed these observations and further revealed that mutations affecting the first four amino acids of middle T antigen reduced or abolished its capacity to activate the kinase activity of pp60c-src and to transform Rat-1 cells in culture. Our results suggest that the first four amino acids of middle T antigen constitute part of a domain required for activation of the pp60c-src tyrosyl kinase activity and for consequent cellular transformation.  相似文献   

12.
Purification and characterization of phosphoinositide 3-kinase from rat liver   总被引:64,自引:0,他引:64  
Phosphoinositide 3-kinase was purified 27,000-fold from rat liver. The enzyme was purified by acid precipitation of the cytosol followed by chromatography on DEAE-Sepharose, S-Sepharose, hydroxylapatite, Mono-Q, and Mono-S columns. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified phosphoinositide 3-kinase preparation contained an 85-kDa protein and a protein doublet of approximately 110 kDa. The 85- and 110-kDa proteins focus together on native isoelectric focusing gels and are cross-linked by dithiobis(succinylamide propionate), showing that the 110- and 85-kDa proteins are a complex. The apparent size of the native enzyme, as determined by gel filtration, is 190 kDa. The 85-kDa subunit is the same protein previously shown to associate with polyoma virus middle T antigen and the platelet-derived growth factor receptor (Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M. (1987) Cell 50, 1021-1029). The two proteins co-migrate on two-dimensional gels; and, using a Western blotting procedure, 32P-labeled middle T antigen specifically blots the 85-kDa protein. The purified enzyme phosphorylates phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. The apparent Km values for ATP were found to be 60 microM with phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate as the substrate. The apparent Km for phosphatidyinositol is 60 microM, for phosphatidylinositol 4-phosphate is 9 microM, and for phosphatidylinositol 4,5-bisphosphate is 4 microM. The maximum specific activity using phosphatidylinositol as the substrate is 0.8 mumol/mg/min. The enzyme requires Mg2+ with an optimum of 5 mM. Substitution of Mn2+ for Mg2+ results in only approximately 10% of the Mg2(+)-dependent activity. Physiological calcium concentrations have no effect on the enzyme activity. Phosphoinositide 3-kinase has a broad pH optimum around 7.  相似文献   

13.
pp60c-src Kinase is in chick and human embryonic tissues   总被引:28,自引:0,他引:28  
The normal cellular protein pp60c-src is a tyrosine-specific protein kinase that is homologous to the transforming protein of Rous sarcoma virus (RSV) but its function is unknown. The expression of pp60c-src in chick and human embryonic tissues was monitored by the immune complex protein kinase assay, Western transfer analysis, and immunocytochemical staining at the light microscope level. pp60c-src kinase was expressed in the head and trunk regions of the chick embryo at all stages of development examined; however, expression increased significantly during the major period of organogenesis (Hamburger and Hamilton stages 21 to 32). Western transfer analysis showed that the amount of pp60c-src protein increased in parallel with the increase in kinase activity. Highest levels of pp60c-src kinase were present in the neural tube, brain, and heart of the stage 32 chick embryo. Lower levels of activity were found in eye, limb bud, and liver. Immunocytochemical staining of the neural tube region and heart of the chick confirmed the results of biochemical analysis and showed immunoreactive pp60c-src distributed throughout the neural tube and heart. The distribution of pp60c-src kinase in human fetal tissues was similar to that in the chick embryo; elevated levels of pp60c-src kinase were present in cerebral cortex, spinal cord, and heart, but all other tissues examined expressed some pp60c-src kinase. The results of our studies suggest that pp60c-src plays a fundamental role in an aspect of cellular metabolism that is particularly important in electrogenic tissues.  相似文献   

14.
Polyomavirus middle T antigen (MT) is the major transforming protein of the virus. It functions through interactions with a number of cellular proteins involved in cell proliferation. MT forms complexes with protein phosphatase 2A (PP2A), pp60c-src, phosphatidylinositol 3-kinase, and Shc. We introduced both deletion and point mutations into three regions of MT and examined their ability to associate with PP2A and pp60c-src. The first 25 amino acid residues of MT are required for association with PP2A and pp60c-src. Amino acids 105 to 111, comprising the sequence Cys-Arg-Met-Pro-Leu-Thr-Cys, is also required for complex formation between MT and PP2A. However, the sequence Asp-Lys-Gly-Gly (amino acids 44 to 47), also found in the B subunit of PP2A, is dispensable for complex formation between MT and PP2A. We find a strict correlation between the ability of MT to associate with PP2A and the ability of MT to associate with pp60c-src. One mutant, L5E, associates with a phosphatase other than PP2A, pp60c-src, and phosphatidylinositol 3-kinase in a manner similar to that of wild-type MT yet is reduced in its transforming ability on NIH 3T3 cells.  相似文献   

15.
The polyoma middle tumor antigen (MTAg) associates with the src proto-oncogene product pp60c-src in infected or transformed rodent cells. The tyrosine protein kinase activity of pp60c-src, as measured by in vitro phosphorylation of pp60c-src itself or the exogenous substrate enolase, was increased 10- to 20-fold in cells transformed or infected with transformation-competent polyoma virus compared with controls. pp60c-src associated with MTAg and precipitated with polyoma antitumor serum had a novel site(s) of in vitro tyrosine phosphorylation within its amino-terminal domain. These observations suggest that association of MTAg with pp60c-src alters the accessibility of pp60c-src tyrosine residues for phosphorylation in vitro and increases pp60c-src protein kinase activity. Several transformation-defective mutants of MTAg did not cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro or enhance its protein kinase activity, suggesting that these properties correlate with the transforming ability of MTAg. However, one transformation-defective MTAg mutant, dl1015, did cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro and did enhance its protein kinase activity. This suggests that properties of MTAg, in addition to modifying the structure and function of pp60c-src, may be important for transformation.  相似文献   

16.
We have examined the effect of polyoma virus infection of primary mouse embryo cells on the tyrosyl kinase activity associated with the cellular src gene product, pp60c-src. The results of our studies demonstrate that infection of mouse cells with wild-type polyoma virus or viral mutants capable of transforming rodent cells in culture and inducing tumors in animals results in the stimulation of pp60c-src tyrosyl kinase activity. The level of pp60c-src kinase stimulation in infected cells was found to be proportional to both the oncogenic potential of the virus strain used for infection and the characteristic phenotype of rodent cells transformed by the various strains of polyoma virus. Stimulation of pp60c-src kinase activity was not observed in mouse cells infected with transformation-defective strains of polyoma virus. In examining the kinetics of pp60c-src kinase stimulation in mouse cells at various times following wild-type polyoma virus infection, we found that the level of pp60c-src kinase activity correlated directly with the synthesis of polyoma virus-encoded tumor antigens. By comparing wild-type polyoma virus with other viral mutants in these experiments, we conclude that the stimulation of pp60c-src kinase activity in mouse cells following polyoma virus infection is associated with the synthesis of middle tumor antigen.  相似文献   

17.
An 85,000-molecular-weight polypeptide (85K polypeptide) has previously been identified as a common substrate for tyrosine phosphorylation upon polyomavirus middle T transformation or upon platelet-derived growth factor stimulation of 3T3 cells. In each case, pp85 has an associated phosphatidylinositol kinase activity. The tissue distribution of pp85 was determined by middle T blotting experiments; the highest levels were found in brain, lung, and spleen tissues. High-resolution examination of 85K by isoelectric focusing demonstrated that there are at least 10 different forms. These were resolved into two families, 85K and 86K; the ratio of the two families changed in different cells. Similar forms were found for pp85 associated with pp60v-src. Individual species within each family differed by phosphorylation. Analysis of pp85 and pp86 by immunoprecipitation with anti-phosphotyrosine antibody showed increasing phosphorylation in response to middle T or pp60v-src transformation. The association of middle T with pp85 and pp60c-src was examined in pulse-chase experiments. Association of middle T with pp60c-src was slow and was accompanied by progressive modification of middle T. pp85 formed a dissociable complex with middle T within 2.5 min.  相似文献   

18.
NIH 3T3 cells were transfected with plasmids containing Moloney murine leukemia virus long terminal repeats and either chicken c-src or v-src genes. In contrast with the effects observed after transfection with plasmids containing c-src and avian retrovirus or simian virus 40 promoter-enhancers (H. Hanafusa, H. Iba, T. Takeya, and F. R. Cross, p. 1-8, in G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, ed., Cancer Cells, vol. 2, 1984; H. Iba, T. Takeya, F. R. Cross, T. Hanafusa, and H. Hanafusa, Proc. Natl. Acad. Sci. U.S.A. 81:4424-4428, 1984; R. C. Parker, R. Swanstrom, H. E. Varmus, and J. M. Bishop, p. 19-26, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; R. C. Parker, H. E. Varmus, and J. M. Bishop, Cell 37:131-139, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, p. 9-17, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, Proc. Natl. Acad. Sci. U.S.A. 81:7071-7075; and K. C. Wilhelmsen, W. G. Tarpley, and H. M. Temin, p. 303-308, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984), we found that both types of Moloney murine leukemia virus long terminal repeat-src expression plasmids induced focus formation, although c-src induced only 1% as many foci as v-src. The focus-selected c-src overexpressed cells had altered morphology and limited growth in soft agarose but were not tumorigenic in vivo. Cleveland digests, comparative in vitro kinase assays, secondary transfections, and immunoprecipitations indicated that focus formation was caused by rare transfection events that resulted in very high-level pp60c-src expression rather than by mutations of the transfected c-src genes. These results suggest that pp60v-src induced transformation is not a completely spurious activity which is unrelated to the function of pp60c-src but that it represents a perturbation of already existent molecular control processes involving pp60c-src.  相似文献   

19.
Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.  相似文献   

20.
We contrasted the protein kinase activities of pp60v-src, the transforming protein of Rous sarcoma virus, and its normal cellular homolog pp60c-src with respect to inhibition by P1,P4-di(adenosine-5')tetraphosphate by using the immune complex protein kinase assay. The concentration of P1,P4-di(adenosine-5')tetraphosphate required for 50% inhibition of pp60v-src kinase (1 microM) was found to be significantly lower than that required for inhibition of pp60c-src kinase (46 microM). Viral and cellular pp60src kinases differed to a lesser extent with respect to inhibition by adenosine-5'-tetraphosphate, di(guanosine-5')tetraphosphate, and ADP. No significant differences were found in the ATP Km values of pp60v-src (0.108 +/- 0.048 microM) and pp60c-src kinases (0.056 +/- 0.012 microM). These results demonstrate that the protein kinase activities of viral and cellular pp60src are functionally distinguishable, particularly on the basis of enhanced sensitivity of the viral enzyme to inhibition by P1,P4-di(adenosine-5')tetraphosphate. These functional differences are likely to be due to differences in the conformation of the active site and may be important for determining transformation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号