首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made on the correlation between the degree of membrane fusion and surface tension increase of phosphatidic acid membranes caused by divalent cations. Membrane fusion was followed by the Tb3+/dipicolinic acid assay, monitoring the fluorescent intensity for mixing of the internal aqueous contents of small unilamellar lipid vesicles. The surface tension and surface potential of monolayers made of the same lipids as used in the fusion experiments were measured as a function of divalent cation concentration. It was found that the 'threshold' concentration to induce massive vesicle membrane fusion was the same for Ca2+ and Mg2+, and that the surface tension increase in the monolayer, induced by changing divalent cation concentration from zero to a concentration which corresponds to its threshold value, inducing vesicle membrane fusion, was approximately the same: 6.3 dyn/cm for both Ca2+ and Mg2+. Both the divalent cation's threshold concentrations as well as the surface tension change corresponding to the threshold concentration for the phosphatidic acid membrane were smaller than those for the phosphatidylserine membrane. The different fusion capability of these divalent cations for phosphatidic acid and phosphatidylserine membranes is discussed in terms of the different ion binding capabilities of these ions to the membranes.  相似文献   

2.
The effects of proteins on divalent cation-induced phospholipid vesicle aggregation and phospholipid vesicle-monolayer membrane interactions (fusion) were examined. Glycophorin (from human erythrocytes) suppressed the membrane interactions more than N-2 protein (from human brain myelin) when these proteins were incorporated into acidic phospholipid vesicle membranes. The threshold concentrations of divalent cations which induced vesicle aggregation were increased by protein incorporation, and the rate of vesicle aggregation was reduced. A similar inhibitory effect by the proteins, incorporated into lipid vesicle membranes, was observed for Ca2+-induced lipid vesicle-monolayer interactions. However, when these proteins were incorporated only in the acidic phospholipid monolayers, the interaction (fusion) of the lipid vesicle-monolayer membranes, induced by divalent cations, was not appreciably altered by the presence of the proteins.In contrast to these two proteins, the presence of synexin in the solution did enhance the Ca2+-induced aggregation of phosphatidylserine vesicles, but did not seem to affect the degree of Ca2+-induced fusion between phosphatidylserine/phosphatidylcholine (1:1) and phosphatidylserine vesicles and monolayer membranes.  相似文献   

3.
A sensitive method which utilizes fluorescence energy transfer to assay Ca2+ -or Mg2+ -mediated fusion of phospholipid vesicles is reported. More than 85% quenching results when phosphatidylserine vesicles labelled with dansyl phosphatidylethanolamine (donor) are fused with vesicles labelled with rhodamine phosphatidylethanolamine (acceptor) in the presence of 5 mM CaCl2 or 10 mM MgCl2. Higher concentrations of divalent cations are required to obtain maximal quenching when phosphatidylserine is partially replaced with phosphatidylethanolamine or phosphatidylcholine. The rate of vesicle fusion is dependent upon the concentrations of both cation and vesicles. Maximum quenching occurs within 5 min using phosphatidylserine vesicles and 5 mM Ca2+, but quenching is incomplete even after 20 h with 0.8--2 mM Ca2+. This probably reflects the heterogeneous size distribution of these vesicles, since the extent of fusion was found to correlated with vesicle size. Binding of antibody to membrane-localized phenobarbital hapten effectively blocks Ca2+ -mediated vesicle fusion. This effect can be inhibited by preincubation of the antibody with phenobarbital. Leakage of tempocholine from intact vesicles induced by 5 mM Ca2+ occurs even when fusion is prevented by bound antibody. This demonstrates that fusion is not a necessary requirement for Ca2+ -induced leakage.  相似文献   

4.
The effects of phospholipid vesicles and divalent cations in the subphase solution on the surface tension of phospholipid monolayer membranes were studied in order to elucidate the nature of the divalent cation-induced vesicle-membrane interaction. The monolayers were formed at the air/water interface. Various concentrations of unilamellar phospholipid (phosphatidylserine, phosphatidylcholine and their mixtures) vesicles and divalent cations (Mg2+, Ca2+, Mn2+, etc.) were introduced into the subphase solution of the monolayers. The changes of surface tension of monolayers were measured by the Wilhelmy plate (Teflon) method with respect to divalent ion concentrations and time.When a monolayer of phosphatidylserine and vesicles of phosphatidylserine/phosphatidylcholine (1 : 1) were used, there were critical concentrations of divalent cations to produce a large reduction in surface tension of the monolayer. These concentrations were 16 mM for Mg2+, 7 mM for Sr2+, 6 mM for Ca2+, 3.5 mM for Ba2+ and 1.8 mM for Mn2+. On the other hand, for a phosphatidylcholine monolayer and phosphatidylcholine vesicles, there was no change in surface tension of the monolayer up to 25 mM of any divalent ion used. When a phosphatidylserine monolayer and phosphatidylcholine vesicles were used, the order of divalent ions to effect the large reduction of surface tension was Mn2+ > Ca2+ > Mg2+ and their critical concentrations were in between the former two cases. The threshold concentrations also depended upon vesicle concentrations as well as the area/molecule of monolayers. For phosphatidylserine monolayers and phosphatidylserine/phosphatidylcholine (1 : 1) vesicles, above the critical concentrations of Mn2+ and Ca2+, the surface tension decreased to a value close to the equilibrium pressure of the monolayers within 0.5 h.This decrease in surface tension of the monolayers is interpreted partly as the consequence of fusion of the vesicles with the monolayer membranes. The  相似文献   

5.
Effects of various metal cations and polyamines on aggregation and fusion of phosphatidylserine vesicles and their associated physicochemical properties (such as surface tension and vesicle electrophoretic mobility) have been studied. It was found that metal polycations and hydrogen ion caused an increase in the surface tension of a phosphatidylserine monolayer, whereas the polyamines and other monovalent cations did not increase the surface tension of the membrane appreciably. All cations used affected the vesicle mobility roughly in the order of the number of their valencies and linearly with respect to the logarithm of their concentrations of ions; vesicle surface charge densities are reduced by adsorption and screening of the counter ions depending on their valencies and concentrations. The degree of aggregation of lipid vesicles parallels somewhat that of the reduction of vesicle electrophoretic mobilities. However, the degree of membrane fusion induced by these cations parallels that of the increase in surface tension of the membranes induced by these cations.  相似文献   

6.
We have investigated the contribution of various phospholipids to membrane fusion induced by divalent cations. Fusion was followed by means of a new fluorescence assay monitoring the mixing of internal aqueous contents of large (0.1 μm diameter) unilamellar liposomes. The rate and extent of fusion induced by Ca2+ in mixed phosphatidylserine/phosphatidylcholine vesicles were lower compared to those in pure phosphatidylserine vesicles. The presence of 50% phosphatidylcholine completely inhibited fusion, although the vesicles aggregated upon Ca2+ addition. When phosphatidylserine was mixed with phosphatidylethanolamine, however, rapid fusion could be induced by Ca2+ even in mixtures that contained only 25% phosphatidylserine. Phosphatidylethanolamine also facilitated fusion by Mg2+ which could not fuse pure phosphatidylserine vesicles. In phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine mixtures, in which the phosphatidylcholine content was kept at 25%, phosphatidylethanolamine could not substitute for phosphatidylserine, and the fusogenic capacity of Mg2+ was abolished by the presence of merely 10% phosphatidylcholine. The initial rate of release of vesicle contents was slower than the rate of fusion in all the mixtures used. The presence of phosphate effected a considerable decrease in the threshold concentration of Ca2+ and also enhanced  相似文献   

7.
Calcium and lanthanum ion-induced fusion of lipid vesicles containing phosphatidylinositol (PI), phosphatidylinositol-4-monophosphate (PIP), phosphatidylinositol-4,5-bisphosphate (PIP2) or phosphatidylinositol-3,4,5-trisphosphate (PIP3) and its associated membrane properties, e.g., surface dielectric constant and vesicle leakage, were studied by fluorescence methods. The presence of poly-phosphorylated phosphoinositides (PPI) in lipid vesicles enhanced fusion, depending on the PPI phosphorylation level and the PPI concentration, as determined by the lipid mixing assay. This correlation held even at physiologically relevant small concentrations of PPI in vesicle membranes. However, the presence of nonphosphorylated PI inhibited fusion due to the steric effect of the inositol ring. The cation threshold concentration for the lipid mixing of vesicles made of mixtures of phosphatidylserine (PS) with PI increased with increasing PI contents. For all vesicle systems studied, a decrease in vesicle surface dielectric constant and an increase in vesicle leakage accompanied fusion. The presence of the nonphosphorylated inositol ring in PI did not interfere with the changes in the surface dielectric constant caused by fusogenic cations. Therefore, we deduce that the reduction of the surface dielectric constant is a necessary condition for membrane fusion to occur but it does not correlate with membrane fusion when interacting membranes are blocked for close approach as by the nonphosphorylated inositol ring.  相似文献   

8.
Summary Addition of fragmented sarcoplasmic reticulum (SR) vesicles to the aqueous phase of a black lipid membrane (BLM) causes a large increase in BLM conductance within 10 min. The conductance increase is absolutely dependent on three conditions: The presence of at least 0.5mm Ca++, an acidic phospholipid such as phosphatidylserine or diphosphatidylglycerol in the BLM phospholipid mixture, and an osmotic gradient across the SR vesicle membrane, with the internal osmolarity greater than the external. These requirements are identical to conditions under which the fusion of phospholipid vesicles occurs.When the early part of the time course of conductance rise is examined at high sensitivity, the conductance is seen to increase in discrete steps. The probability of a step increases with the concentration of Ca++ in the medium, with the fraction of acidic phospholipid in the BLM, and with the size of the osmotic gradient across the SR vesicle membrane. On the other hand, the average conductance change per step is independent of the above parameters, but varies with the type and concentration of ions present in the aqueous phase. For a given ion, the mean specific conductance per step is independent of the ion's concentration between 10 and 100mm.The probability distribution of the step-conductances agrees well with the distribution of SR vesicle surface areas, both before and after sonication of the vesicles.The evidence indicates that SR vesicles fuse with the BLM, thereby inserting SR membrane conductance pathways into it. Each discrete conductance jump appears to be the result of the fusion of a single SR vesicle with the BLM. This technique may serve as a general method for inserting membrane vesicles into an electrically accessible system.  相似文献   

9.
Aggregation and fusion of unilamellar vesicles consisting of N-acyl-N-methylphosphatidylethanolamine were studied as a function of mono- and divalent cation concentrations. The aggregation reactions were irreversible processes, as demonstrated by changes in monovalent ion concentrations and by the addition of ethylenediaminetetraacetic acid (EDTA) to chelate divalent cations, suggesting the possibility of some cation-induced vesicle fusion. An increase in the NaCl ionic strength of the vesicle suspension solutions diminishes the threshold concentration for Li+ and K+ and increases that corresponding to Mn2+, Mg2+ and Ca2+. However NaCl concentrations above 300 mM yield smaller threshold values for the divalent cation-induced processes, probably due to the increased size of phospholipid vesicles as the ionic strength of the medium increases.  相似文献   

10.
During exocytosis, vesicles in secretory cells fuse with the cellular membrane and release their contents in a Ca2+-dependent process. Release occurs initially through a fusion pore, and its rate is limited by the dissociation of the matrix-associated contents. To determine whether this dissociation is promoted by osmotic forces, we have examined the effects of elevated osmotic pressure on release and extrusion from vesicles at mast and chromaffin cells. The identity of the molecules released and the time course of extrusion were measured with fast scan cyclic voltammetry at carbon fiber microelectrodes. In external solutions of high osmolarity, release events following entry of divalent ions (Ba2+ or Ca2+) were less frequent. However, the vesicles appeared to be fused to the membrane without extruding their contents, since the maximal observed concentrations of events were less than 7% of those evoked in isotonic media. Such an isolated, intermediate fusion state, which we term "kiss-and-hold," was confirmed by immunohistochemistry at chromaffin cells. Transient exposure of cells in the kiss and hold state to isotonic solutions evoked massive release. These results demonstrate that an osmotic gradient across the fusion pore is an important driving force for exocytotic extrusion of granule contents from secretory cells following fusion pore formation.  相似文献   

11.
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) side; for substantial fusion rates, divalent cation must also be present on the cis side. Thus, the low fusion rates obtained with 100 mM excess glucose in the cis compartment are enhanced orders of magnitude by the addition of 5-10 mM CaCl2 to the cis compartment. Conversely, the rapid fusion rates induced by 40 mM CaCl2 in the cis compartment are completely suppressed when the osmotic gradient (created by the 40 mM CaCl2) is abolished by addition of an equivalent amount of either CaCl2, NaCl, urea, or glucose to the trans compartment. We propose that fusion occurs by the osmotic swelling of vesicles in contact with the planar membrane, with subsequent rupture of the vesicular and planar membranes in the region of contact. Divalent cations catalyze this process by increasing the frequency and duration of vesicle-planar membrane contact. We argue that essentially this same osmotic mechanism drives biological fusion processes, such as exocytosis. Our fusion procedure provides a general method for incorporating and reconstituting transport proteins into planar phospholipid bilayer membranes.  相似文献   

12.
Polycation-induced fusion of negatively-charged vesicles   总被引:3,自引:0,他引:3  
Sonicated vesicles of 20-50 nm in diameter consisting of neutral phospholipids and a variety of acidic phospholipids were interacted with polylysine, cytochrome c, Ca2+ and Mg2+. The addition of polycations caused massive aggregation accompanied by an increase of membrane permeability as determined by leakage of fluorescent dye. Aggregation was followed by fusion of the vesicles into structures that in some cases exceeded 1 micron in diameter. Polylysine induced aggregation and appreciable fusion at charge ratios (polylysine/phospholipid) of 0.5-2, while divalent cations did so only at charge ratios (cation/phospholipid) greater than 10. Aggregation and fusion induced by polylysine were dependent also on the size of the polycation, i.e., the longer the molecule the less needed to induce similar aggregation. It appears that, due to the concentration of charges on a single molecule, polylysine is at least an order of magnitude more effective than divalent cations at inducing fusion of membranes. Cytochrome c induced fusion of similar vesicles at moderately acidic pH (pH 4.2).  相似文献   

13.
Osmotic properties of large unilamellar vesicles prepared by extrusion.   总被引:8,自引:5,他引:3  
We have examined the morphology and osmotic properties of large unilamellar vesicles (LUVs) prepared by extrusion. Contrary to expectations, we observe by cryo-electron microscopy that such vesicles, under isoosmotic conditions, are non-spherical. This morphology appears to be a consequence of vesicle passage through the filter pores during preparation. As a result when such LUVs are placed in a hypoosmotic medium they are able to compensate, at least partially, for the resulting influx of water by "rounding up" and thereby increasing their volume with no change in surface area. The increase in vesicle trapped volume associated with these morphological changes was determined using the slowly membrane-permeable solute [3H]-glucose. This allowed calculation of the actual osmotic gradient experienced by the vesicle membrane for a given applied differential. When LUVs were exposed to osmotic differentials of sufficient magnitude lysis occurred with the extent of solute release being dependent on the size of the osmotic gradient. Surprisingly, lysis was not an all-or-nothing event, but instead a residual osmotic differential remained after lysis. This differential value was comparable in magnitude to the minimum osmotic differential required to trigger lysis. Further, by comparing the release of solutes of differing molecular weights (glucose and dextran) a lower limit of about 12 nm diameter can be set for the bilayer defect created during lysis. Finally, the maximum residual osmotic differentials were compared for LUVs varying in mean diameter from 90 to 340 nm. This comparison confirmed that these systems obey Laplace's Law relating vesicle diameter and lysis pressure. This analysis also yielded a value for the membrane tension at lysis of 40 dyn cm-1 at 23 degrees C, which is in reasonable agreement with previously published values for giant unilamellar vesicles.  相似文献   

14.
Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes   总被引:2,自引:0,他引:2  
Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, and fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing of internal aqueous contents of liposomes, utilizing the quenching of aminonaphthalene-3,6,8-trisulfonic acid (ANTS) by N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated in two separate populations of vesicles, (ii) a resonance energy transfer assay for the dilution of fluorescent phospholipids from labeled to unlabeled liposomes, (iii) irreversible changes in turbidity, and (iv) quick-freezing freeze-fracture electron microscopy. Destabilization is followed by the fluorescence increase caused by the leakage of coencapsulated ANTS/DPX or of calcein. Ca2+ and Mg2+ also induce fusion of these vesicles at 3 and 4 mM, respectively. The threshold for fusion is at a higher pH in the presence of low (subfusogenic) concentrations of these divalent cations. Vesicles composed of phosphatidylserine/phosphatidylethanolamine or of oleic acid/phosphatidylcholine (3:7 mole ratio) do not aggregate, destabilize, or fuse in the pH range 7-4, indicating that phosphatidylserine and phosphatidylcholine cannot be substituted for oleic acid and phosphatidylethanolamine, respectively, for proton-induced membrane fusion. Freeze-fracture replicas of oleic acid/phosphatidylethanolamine liposomes frozen within 1 s of stimulation with pH 5.3 display larger vesicles and vesicles undergoing fusion, with membrane ridges and areas of bilayer continuity between them. The construction of pH-sensitive liposomes is useful as a model for studying the molecular requirements for proton-induced membrane fusion in biological systems and for the cytoplasmic delivery of macromolecules.  相似文献   

15.
Small unilamellar lipid bilayer vesicles were prepared from brain phosphatidylserine, egg phosphatidylcholine, and synthetic dipalmitoylphosphatidylcholine, and were fused into larger structures by freezing and thawing, addition of calcium chloride, and passage through the lipid phase transition temperature. Fusion reactions were studied by electron microscopy, light scattering, and use of fluorescent probes. Fusion was accompanied by leakage of lipid vesicle constituents and of water-soluble solutes in the inner vesicle compartments, and by uptake of these types of components from the external solution. Such leakage was greater during fusion by freezing than by Ca2+. Passage through the transition temperature produced a moderate degree of fusion, without loss of membrane components. It is concluded that each fusion method gives rise to a characteristic size or narrow range of sizes of fusion products. The fraction of small vesicles fused into larger structure depends on the method of vesicle preparation, composition of the lipid bilayer, and composition of the external solution. Fusion is induced by creation of a discontinuity in the bilayer or by removal of water associated with the bilayer. The amount of water removed controls the extent of fusion. This is maximized in bilayers when in the liquid-crystal phase, as against the gel phase, in vesicles made by ethanol injection, as against sonication, and in charged bilayers, as against neutral ones.  相似文献   

16.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3--5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 micrometer diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

17.
Poly (ethylene glycol) (PEG) in the external environment of membrane vesicles creates osmotic imbalance that leads to mechanical stress in membranes and may induce local membrane curvature. To determine the relative importance of membrane stress and curvature in promoting fusion, we monitored contents mixing (CM) and lipid mixing (LM) between different sized vesicles under a variety of osmotic conditions. CM between highly curved vesicles (SUV, 26 nm diameter) was up to 10 times greater than between less curved vesicles (LUV, 120 nm diameter) after 5 min incubation at a low PEG concentration (<10 wt%), whereas LM was only approximately 30% higher. Cryo-electron microscopy showed that PEG at 10 wt% did not create high curvature contacts between membranes in LUV aggregates. A negative osmotic gradient (-300 mOs/kg, hypotonic inside) increased CM two- to threefold for both types of vesicles, but did not affect LM. A positive gradient (+220 mOs/kg, hypertonic inside) nearly eliminated CM and had no effect on LM. Hexadecane added to vesicles had no effect on LM but enhanced CM and reduced the inhibitory effect on CM of a positive osmotic gradient, but had little influence on results obtained under a negative osmotic gradient. We conclude that the ability of closely juxtaposed bilayers to form an initial intermediate ("stalk") as soon as they come into close contact was not influenced by osmotic stress or membrane curvature, although pore formation was critically dependent on these stresses. The results also suggest that hexadecane affects the same part of the fusion process as osmotic stress. We interpret this result to suggest that both a negative osmotic gradient and hexadecane reduce the unfavorable free energy of hydrophobic interstices associated with the intermediates of the fusion process.  相似文献   

18.
Dynamic light scattering has been used to study the temperature dependence of Ca2+-induced fusion of phosphatidylserine vesicles and mixed vesicles containing phosphatidylserine and different phosphatidylcholines. The final vesicle size after Ca2+ and EDTA incubation serves as a measure of the extent of fusion. With phosphatidylserine vesicles, the extent of fusion shows a sharp maximum at an incubation temperature which depends on the Ca2+ concentration between 0.8 and 2 mM. The shift in the fusion peak temperature with Ca2+ concentration is similar to the typical shift in the phase transition temperature with divalent cation concentration in acidic phospholipids. The results suggest a direct correlation between the fusion peak temperature and the phase transition temperature in the presence of Ca2+ prior to fusion. With mixed vesicles containing up to 33% of a phosphatidylcholine in at least 2 mM Ca2+, the extent of fusion as a function of incubation temperature also shows a maximum. The fusion peak temperature is essentially independent of the quantity and type of phosphatidylcholine and the Ca2+ concentration, and identical to that with pure phosphatidylserine in excess Ca2+. The results imply that Ca2+- induced molecular segregation occurs first, and fusion subsequently takes place between pure phosphatidylserine domains.  相似文献   

19.
Role of channels in the fusion of vesicles with a planar bilayer.   总被引:7,自引:3,他引:7       下载免费PDF全文
Fluorescence microscopy combined with electrical conductance measurements were used to assess fusion of phospholipid vesicles with a planar bilayer. Large unilamellar vesicles (0.5-3 microns diam.) filled with the fluorescent dye, calcein, were made both with or without porin channels. Vesicle-bilayer fusion was induced by increasing the osmolarity of the solution on the side of the bilayer to which the vesicles were added. Fusion was detected optically by the fluorescent flash due to release of vesicular contents. Although both porin-containing and porin-free vesicles give the same kind of flash upon content release, the conditions necessary to induce release are very different. Only 4% of the porin-free vesicles fuse (release their contents) when subjected to 3 M urea. However, the same conditions induce 53% of the porin-containing vesicles to fuse and most of these fusions occur at a lower osmolarity ([urea] less than 400 mM). Thus channels greatly enhance fusion in this model system. A physical model based on the postulate that fusion is induced by an increase in surface tension, predicts that three conditions are necessary for fusion in this system: (a) an open channel in the vesicle membrane, (b) an osmotic gradient across the bilayer, and (c) the vesicle in contact with the planar membrane. These are the conditions that experimentally produce fusion in the model system.  相似文献   

20.
Electron microscopy cytochemistry has been used to study the cytoplasmic location of liposomes and lipid vesicles following specific antibody-dependent phagocytosis. The vesicle compositions were 94–99 mol% ‘fluid’ lipid (egg phosphatidylcholine or dimyristoylphosphatidylcholine at 37°C or ‘solid’ lipid (dipalmitoylphosphatidylcholine at 37°C). In some cases, 4 mol% phosphatidylserine was included in the vesicle membrane so as to vary the surface charge density. These vesicles undergo specific antibody-dependent phagocytosis by RAW264 macrophages when the lipid membranes contain 1–2 mol% dinitrophenyl lipid hapten in the presence of rabbit anti-dinitrophenyl IgG antibody. Internalized lipid vesicles can be visualized with the electron microscope when ferritin is trapped in the internal aqueous compartments prior to internalization. The lipid vesicles were demonstrated to be internal to the macrophage plasma membranes by selectively staining the plasma membranes with Ruthenium red. The cytoplasmic location of vesicles and liposomes was studied by electron microscopic staining for activities of the following enzymes: (1) acid phosphatase; (2) inorganic trimetaphosphatase; (3) adenosine triphosphatase; and (4) glucose-6-phosphatase. The first two enzymatic activities were found in association with ferritin-containing vesicles after antibody-dependent phagocytosis, showing the formation of vesicle-containing phagolysosomes. Adenosine triphosphatase and glucose-6-phosphatase were primary not associated with the vesicles, suggesting a minimal association of vesicles with plasma membrane, Golgi, endoplasmic reticulum and perinuclear cisternae. Phagosome-lysosome fusion did not appear to depend on the type of target lipid vesicle or liposome, on the ‘fluidity’ of the target membrane, or the presence of phosphatidylserine in the target membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号