首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.  相似文献   

2.
The alpha subunit (140 kDa) of DNA polymerase III (pol III) holoenzyme has been purified to near-homogeneity from a plasmid-carrying Escherichia coli strain which overproduced the alpha subunit about 20-fold. Pol III core (containing only the alpha, epsilon, and theta subunits), produced at twice the normal level, was also purified in good yield. The isolated alpha subunit has DNA polymerase activity, which is completely inhibited by 10 mM N-ethylmaleimide or 150 mM KCl as observed in the pol III core or holoenzyme. The alpha subunit has an apparent turnover number of 7.7 nucleotides polymerized per s, compared to 20 for pol III core, and is more thermolabile. The alpha subunit lacks the 3'----5' exonuclease (proofreading) activity of pol III core; neither alpha subunit nor core (nor holoenzyme) possesses any of the previously reported 5'----3' exonuclease activity. Thus, the alpha polypeptide is the polymerase subunit and epsilon (27 kDa) is the proofreading subunit (Scheuermann, R. H., and Echols, H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 7747-7751). Together with the theta polypeptide (10 kDa), of unknown function, they form a pol III core with greater stability and catalytic efficiency.  相似文献   

3.
The Hot (homolog of theta) protein of bacteriophage P1 can substitute for the Escherichia coli DNA polymerase III theta subunit, as evidenced by its stabilizing effect on certain dnaQ mutants that carry an unstable polymerase III epsilon proofreading subunit (antimutator effect). Here, we show that Hot can also cause an increase in the mutability of various E. coli strains (mutator effect). The hot mutator effect differs from the one caused by the lack of theta. Experiments using chimeric theta/Hot proteins containing various domains of Hot and theta along with a series of point mutants show that both N- and C-terminal parts of each protein are important for stabilizing the epsilon subunit. In contrast, the N-terminal part of Hot appears uniquely responsible for its mutator activity.  相似文献   

4.
DNA polymerase III holoenzyme is a multiprotein complex responsible for the bulk of chromosomal replication in Escherichia coli and Salmonella typhimurium. The catalytic core of the holoenzyme is an alpha epsilon theta heterotrimer that incorporates both a polymerase subunit (alpha; dnaE) and a proofreading subunit (epsilon; dnaQ). The role of theta is unknown. Here, we describe a null mutation of holE, the gene for theta. A strain carrying this mutation was fully viable and displayed no mutant phenotype. In contrast, a dnaQ null mutant exhibited poor growth, chronic SOS induction, and an elevated spontaneous mutation rate, like dnaQ null mutants of S. typhimurium described previously. The poor growth was suppressible by a mutation affecting alpha which was identical to a suppressor mutation identified in S. typhimurium. A double mutant null for both holE and dnaQ was indistinguishable from the dnaQ single mutant. These results show that the theta subunit is dispensable in both dnaQ+ and mutant dnaQ backgrounds, and that the phenotype of epsilon mutants cannot be explained on the basis of interference with theta function.  相似文献   

5.
The DNA polymerase III holoenzyme (HE) is the primary replicative polymerase of Escherichia coli. The epsilon (epsilon) subunit of HE provides the 3'-->5' exonucleolytic proofreading activity for this complex. Epsilon consists of two domains: an N-terminal domain containing the proofreading exonuclease activity (residues 1-186) and a C-terminal domain required for binding to the polymerase (alpha) subunit (residues 187-243). In addition to alpha, epsilon also binds the small (8 kDa) theta (theta) subunit. The function of theta is unknown, although it has been hypothesized to enhance the 3'-->5' exonucleolytic proofreading activity of epsilon. Using NMR analysis and molecular modeling, we have previously reported a structural model of epsilon186, the N-terminal catalytic domain of epsilon [DeRose et al. (2002) Biochemistry 41, 94]. Here, we have performed 3D triple resonance NMR experiments to assign the backbone and C(beta) resonances of [U-(2)H,(13)C,(15)N] methyl protonated epsilon186 in complex with unlabeled theta. A structural comparison of the epsilon186-theta complex with free epsilon186 revealed no major changes in secondary structure, implying that the overall structure is not significantly perturbed in the complex. Amide chemical shift comparisons between bound and unbound epsilon186 revealed a potential binding surface on epsilon for interaction with theta involving structural elements near the epsilon catalytic site. The most significant shifts observed for the epsilon186 amide resonances are localized to helix alpha1 and beta-strands 2 and 3 and to the region near the beginning of alpha-helix 7. Additionally, a small stretch of residues (K158-L161), which previously had not been assigned in uncomplexed epsilon186, is predicted to adopt beta-strand secondary structure in the epsilon186-theta complex and may be significant for interaction with theta. The amide shift pattern was confirmed by the shifts of aliphatic methyl protons, for which the larger shifts generally were concentrated in the same regions of the protein. These chemical shift mapping results also suggest an explanation for how the unstable dnaQ49 mutator phenotype of epsilon may be stabilized by binding theta.  相似文献   

6.
dnaQ (mutD) encodes the editing exonuclease subunit (epsilon) of DNA polymerase III. Previously described mutations in dnaQ include dominant and recessive mutator alleles as well as leaky temperature-sensitive alleles. We describe the properties of strains bearing null mutations (deletion-substitution alleles) of this gene. Null mutants exhibited a growth defect as well as elevated spontaneous mutation. As a consequence of the poor growth of dnaQ mutants and their high mutation rate, these strains were replaced within single colonies by derivatives carrying an extragenic suppressor mutation that compensated the growth defect but apparently not the mutator effect. Sixteen independently derived suppressors mapped in the vicinity of dnaE, the gene for the polymerization subunit (alpha) of DNA polymerase III, and one suppressor that was sequenced encoded an altered alpha polypeptide. Partially purified DNA polymerase III containing this altered alpha subunit was active in polymerization assays. In addition to their dependence on a suppressor mutation affecting alpha, dnaQ mutants strictly required DNA polymerase I for viability. We argue from these data that in the absence of epsilon, DNA replication falters unless secondary mechanisms, including genetically coded alteration in the intrinsic replication capacity of alpha and increased use of DNA polymerase I, come into play. Thus, epsilon plays a role in DNA replication distinct from its known role in controlling spontaneous mutation frequency.  相似文献   

7.
The Escherichia coli dnaQ gene encodes the 3'-->5' exonucleolytic proofreading (epsilon) subunit of DNA polymerase III (Pol III). Genetic analysis of dnaQ mutants has suggested that epsilon might consist of two domains, an N-terminal domain containing the exonuclease and a C-terminal domain essential for binding the polymerase (alpha) subunit. We have created truncated forms of dnaQ resulting in epsilon subunits that contain either the N-terminal or the C-terminal domain. Using the yeast two-hybrid system, we analyzed the interactions of the single-domain epsilon subunits with the alpha and theta subunits of the Pol III core. The DnaQ991 protein, consisting of the N-terminal 186 amino acids, was defective in binding to the alpha subunit while retaining normal binding to the theta subunit. In contrast, the NDelta186 protein, consisting of the C-terminal 57 amino acids, exhibited normal binding to the alpha subunit but was defective in binding to the theta subunit. A strain carrying the dnaQ991 allele exhibited a strong, recessive mutator phenotype, as expected from a defective alpha binding mutant. The data are consistent with the existence of two functional domains in epsilon, with the C-terminal domain responsible for polymerase binding.  相似文献   

8.
Perrino FW  Harvey S  McNeill SM 《Biochemistry》1999,38(48):16001-16009
The epsilon subunit is the 3'-->5' proofreading exonuclease that associates with the alpha and theta subunits in the E. coli DNA polymerase III. Two fragments of the epsilon protein were prepared, and binding of these epsilon fragments with alpha and theta was investigated using gel filtration chromatography and exonuclease stimulation assays. The N-terminal fragment of epsilon, containing amino acids 2-186 (epsilon186), is a relatively protease-resistant core domain of the exonuclease. The purified recombinant epsilon186 protein catalyzes the cleavage of 3' terminal nucleotides, demonstrating that the exonuclease domain of epsilon is present in the N-terminal region of the protein. The absence of the C-terminal 57 amino acids of epsilon in the epsilon186 protein reduces the binding affinity of epsilon186 for alpha by at least 400-fold relative to the binding affinity of epsilon for alpha. In addition, stimulation of the epsilon186 exonuclease by alpha using a partial duplex DNA is about 50-fold lower than stimulation of the epsilon exonuclease by alpha. These results indicate that the C-terminal region of epsilon is required in the epsilonalpha association. To directly demonstrate that the C-terminal region of epsilon contains the alpha-association domain fusion protein, constructs containing the maltose-binding protein (MBP) and fragments of the C-terminal region of epsilon were prepared. Gel filtration analysis demonstrates that the alpha-association domain of epsilon is contained within the C-terminal 40 amino acids of epsilon. Also, the epsilon186 protein forms a tight complex with theta, demonstrating that the association of theta with epsilon is localized to the N-terminal region of epsilon. Association of epsilon186 and theta is further supported by the stimulation of the epsilon186 exonuclease in the presence of theta. These data support the concept that epsilon contains a catalytic domain located within the N-terminal region and an alpha-association domain located within the C-terminal region of the protein.  相似文献   

9.
The Escherichia coli mutator mutD5 is a conditional mutator whose strength is moderate when the strain is growing in minimal medium but very strong when it is growing in rich medium. The primary defect of this strain resides in the dnaQ gene, which encodes the epsilon (exonucleolytic proofreading) subunit of the DNA polymerase III holoenzyme. In one of our mutD5 strains we discovered a mutation that suppressed the mutability of mutD5. Interestingly, the level of suppression was strong in minimal medium but weak in rich medium. The mutation was localized to the dnaE gene, which encodes the alpha (polymerase) subunit of the DNA polymerase III holoenzyme. This mutation, termed dnaE910, also conferred improved growth of the mutD5 strain and caused increased temperature sensitivity in both wild-type and dnaQ49 backgrounds. The reduction in mutator strength by dnaE910 was also observed when this allele was placed in a mutL, a mutT, or a dnaQ49 background. The results suggest that dnaE910 encodes an antimutator DNA polymerase whose effect might be mediated by improved insertion fidelity or by increased proofreading via its effect on the exonuclease activity.  相似文献   

10.
11.
We have introduced a mutD5 mutation (which results in defective 3'-5'-exonuclease activity of the epsilon proofreading subunit of DNA polymerase III holoenzyme) into excision-defective Escherichia coli strains with varying SOS responses to UV light. MutD5 increased the spontaneous mutation frequency in all strains tested, including recA430, umuC122::Tn5, and umuC36 derivatives. It had no effect on UV mutability or immutability in any strain or on misincorporation revealed by delayed photoreversal in UV-irradiated umuC36, umuC122::Tn5, or recA430 bacteria. It is concluded that the epsilon proofreading subunit of DNA polymerase III holoenzyme is excluded, inhibited, or inoperative during misincorporation and mutagenesis after UV.  相似文献   

12.
The theta subunit of DNA polymerase III, the main replicative polymerase of Escherichia coli, has been examined by circular dichroism and by NMR spectroscopy. The polymerase core consists of three subunits: alpha, epsilon, and theta, with alpha possessing the polymerase activity, epsilon functioning as a proofreading exonuclease, and theta, a small subunit of 8.9 kD, of undetermined function. The theta subunit has been expressed in E. coli, and a CD analysis of theta indicates the presence of a significant amount of secondary structure: approximately 52% alpha helix, 9% beta sheet, 21% turns, and 18% random coil. However, at higher concentrations, theta yields a poorly-resolved 1D proton NMR spectrum in which both the amide protons and the methyl protons show poor chemical shift dispersion. Subsequent 1H-15N HSQC analysis of uniformly-15N-labeled theta supports the conclusion that approximately half of the protein is reasonably well-structured. Another quarter of the protein, probably including some of the N-terminal region, is highly mobile, exhibiting a chemical shift pattern indicative of random coil structure. The remaining amide resonances exhibit significant broadening, indicative of intermolecular and/or intramolecular exchange processes. Improved chemical shift dispersion and greater uniformity of resonance intensities in the 1H-15N HSQC spectra resulted when [U-15N]-theta was examined in the presence of epsilon186--the N-terminal domain of the epsilon-subunit. Further work is currently in progress to define the solution structure of theta and the theta-epsilon186 complex.  相似文献   

13.
The catalytic core of Escherichia coli DNA polymerase III holoenzyme contains three subunits: alpha, epsilon, and theta. The alpha subunit contains the polymerase, and the epsilon subunit contains the exonucleolytic proofreading function. The small (8-kDa) theta subunit binds only to epsilon. Its function is not well understood, although it was shown to exert a small stabilizing effect on the epsilon proofreading function. In order to help elucidate its function, we undertook a determination of its solution structure. In aqueous solution, theta yielded poor-quality nuclear magnetic resonance spectra, presumably due to conformational exchange and/or protein aggregation. Based on our recently determined structure of the theta homolog from bacteriophage P1, named HOT, we constructed a homology model of theta. This model suggested that the unfavorable behavior of theta might arise from exposed hydrophobic residues, particularly toward the end of alpha-helix 3. In gel filtration studies, theta elutes later than expected, indicating that aggregation is potentially responsible for these problems. To address this issue, we recorded 1H-15N heteronuclear single quantum correlation (HSQC) spectra in water-alcohol mixed solvents and observed substantially improved dispersion and uniformity of peak intensities, facilitating a structural determination under these conditions. The structure of theta in 60/40 (vol/vol) water-methanol is similar to that of HOT but differs significantly from a previously reported theta structure. The new theta structure is expected to provide additional insight into its physiological role and its effect on the epsilon proofreading subunit.  相似文献   

14.
The Escherichia coli mutT mutator allele produces high frequencies of exclusively A:T-->C:G transversions. This is thought to be caused by a failure to prevent or remove A:G mispairs during DNA replication. The mutD5 mutator allele maps to the dnaQ locus which encodes the epsilon subunit of the DNA polymerase III holoenzyme. This subunit provides 3'-->5' exonuclease, proofreading, activity for removing mispaired nucleotides at the 3' end of the newly synthesized DNA strand. mutD5 has an altered epsilon resulting in reduced levels of proofreading and subsequent high mutation frequencies for all base-pair substitutions. We have analyzed the interaction between mutD5 and mutT-induced A:T-->C:G transversions by measuring reversion frequencies in mutD5 and mutT single mutator strains and mutD5mutT double mutator strains using the well-characterized trpA58 and trpA88 alleles. We find that the double mutator strains produce more A:T-->C:G substitutions than would be expected from simple additivity of the single mutator strains. We interpret this to mean that the two systems, at least in part, do act together to prevent the same mutational intermediate from producing A:T-->C:G transversions. It is estimated that over 90% of the mutT-induced A:G mispairs are corrected by proofreading at the trpA58 site while only about 30% are corrected at trpA88. Reversion frequencies in the mutD5mutT double mutator strains indicate A:G misincorporations occur about 100 x more frequently at trpA58 than at the trpA88 site. Using these and other data we also provide estimations of the fidelity contributions for mutT editing, proofreading and methyl-directed mismatch repair at the two trpA sites for both transversions and the transition that could be scored. In the case of A:T-->C:G transversions, both mutT editing and proofreading make major contributions in error reduction with mismatch repair playing a small or no role at all. For the A:T-->G:C transition, proofreading and mismatch repair were both important in preventing mutations while no contribution was observed for mutT editing.  相似文献   

15.
Most potent mutators heretofore detected in Escherichia coli are associated with defects in epsilon subunit of DNA polymerase III, encoded by the dnaQ gene. To elucidate the role of the alpha subunit, the catalytic subunit of the polymerase, in maintaining the high fidelity of DNA replication, we isolated a mutator mutant, the mutation (dnaE173) of which resides on the dnaE gene, encoding the alpha subunit. The dnaE173 mutant was unable to grow in salt-free L broth at temperatures exceeding 44.5 degrees C and exhibited an increased frequency of spontaneous mutations, 1,000 to 10,000-fold the wild type level, at permissive temperatures. The mutator effect of dnaE173 mutation is dominant over the wild type allele. These phenotypes are caused by a single base substitution, resulting in one amino acid change, Glu612 (GAA)----Lys(AAA), in the alpha subunit molecule. DNA polymerase III purified from the dnaE173 mutant contained both alpha and epsilon subunits, in a normal molar ratio. We found no differences between wild type and mutant polymerases in the Vmax, thermolabilities, and salt sensitivities. However, the apparent Km for the substrate nucleotide of the mutant polymerase was 1/6 of that determined with the wild type polymerase. Although the mutant polymerase retained a normal level of 3'----5' exonuclease activity, the proofreading capacity determined by "turnover assay" was significantly lower in the mutant polymerase, as compared with findings in the normal enzyme. It seems likely that the enhanced mutability in the dnaE173 strain results from, at least in part, a defect in the editing function of DNA polymerase III, and further suggests that a portion of the alpha subunit in which the amino acid change resides may be important for the proper setting of the two subunits at the replication fork so as to facilitate efficient editing during the DNA replication.  相似文献   

16.
UV mutagenesis in E. coli is believed to occur in two discrete steps. The second step involves continued DNA synthesis beyond a blocking lesion in the template strand. This bypass step requires induced levels of umuD and umuC gene products and activated recA protein. DNA polymerase III may be involved since a dnaE mutator strain (believed to have defective base selection) is associated with enhanced UV mutagenesis in conjunction with a genetic background permitting the bypass step. In non-UV-mutable umu and lexA strains, UV mutagenesis can be demonstrated if delayed photorevesal is given. This is interpreted as indicating that an earlier misincorporation step can occur in such strains but the resulting mutations do not survive because the bypass step is blocked. The misincorporation step does not require any induced SOS gene products and can occur either at the replication fork or during repair replication following excision of a DNA lesion. Neither a dnaE mutator gene (leading to a defective subunit of DNA polymerase III holoenzyme) nor a mutD5 mutator gene (leading to a defective ε proofreading subunit) had any effect on he misincorporation step. Although this is consistent with DNA polymerase III holoenzyme not being involved in the misincorporation step, other interpretations involving the inhibition of ε proofreading activity by recA protein are possible.

In vitro studies are reported in which sites of termination of synthesis by DNA polymerase III holoenzyme on UV-irradiated M13 mp8 DNA were examined in the presence of inhibitors of the 3′–5′ proofreading exonuclease (including recA protein). No evidence was found for incorporation of bases opposite photoproducts suggesting that either inhibition is more complete in the cell and/or that other factors are involved in the misincorporation step.  相似文献   


17.
The epsilon subunit of Escherichia coli DNA polymerase III holoenzyme, the enzyme primarily responsible for the duplication of the bacterial chromosome, is a 3'-->5' exonuclease that functions as a proofreader for polymerase errors. In addition, it plays an important structural role within the pol III core. To gain further insight into how epsilon performs these joint structural and catalytic functions, we have investigated a set of 20 newly isolated dnaQ mutator mutants. The mutator effects ranged from strong (700-8000-fold enhancement) to moderate (6-20-fold enhancement), reflecting the range of proofreading deficiencies. Complementation assays revealed most mutators to be partially or fully dominant, suggesting that they carried an exonucleolytic defect but retained binding to the pol III core subunits. One allele, containing a stop codon 3 amino acids from the C-terminal end of the protein, was fully recessive. Sequence analysis of the mutants revealed mutations in the Exo I, Exo II and recently proposed Exo IIIepsilon motifs, as well as in the intervening regions. Together, the data support the functional significance of the proposed motifs, presumably in catalysis, and suggest that the C-terminus of straightepsilon may be specifically involved in binding to the alpha (polymerase) subunit.  相似文献   

18.
The yeast Saccharomyces cerevisiae catalytic DNA polymerase I 180-kDa subunit and the tightly associated 86-kDa polypeptide have been purified using immunoaffinity chromatography, permitting further characterization of the DNA polymerase activity of the DNA primase-DNA polymerase protein complex. The subunits were purified to apparent homogeneity from separate overproducing yeast strains using monoclonal antibodies specifically recognizing each subunit. When the individual subunits were recombined in vitro a p86p180 physical complex formed spontaneously, as judged by immunoprecipitation of 180-kDa polypeptide and DNA polymerase activity with the anti-86-kDa monoclonal antibody. The 86-kDa subunit stabilized the DNA polymerase activity of the 180-kDa catalytic subunit at 30 degrees C, the physiological temperature. The apparent DNA polymerase processivity of 50-60 nucleotides on poly(dA).oligo(dT)12 or poly(dT).oligo(A)8-12 template-primer was not affected by the presence of the 86-kDa subunit but was reduced by increased Mg2+ concentration. The Km of the catalytic 180-kDa subunit for dATP or DNA primer terminus was unaffected by the presence of the 86-kDa subunit. The isolated 180-kDa polypeptide was sufficient to catalyze all the DNA synthesis that had been observed previously in the DNA primase-DNA polymerase protein complex. The 180-kDa subunit possessed a 3'----5'-exonuclease activity that catalyzed degradation of polynucleotides, but degradation of oligonucleotide substrates of chain lengths up to 50 was not detected. This exonuclease activity was unaffected by the presence of the 86-kDa subunit. Despite the striking physical similarity of the DNA primase-DNA polymerase protein complex in all eukaryotes examined, the data presented here indicate differences in the enzymatic properties detected in preparations of the DNA polymerase subunits isolated from S. cerevisiae as compared with the properties of preparations from Drosophila cells. In particular, the 3'----5'-exonuclease activity associated with the yeast catalytic DNA polymerase subunit was not masked by the 86-kDa subunit.  相似文献   

19.
Exonucleolytic editing is a major contributor to the fidelity of DNA replication by the multisubunit DNA polymerase (pol) III holoenzyme. To investigate the source of editing specificity, we have studied the isolated exonuclease subunit, epsilon, and the pol III core subassembly, which carries the epsilon, theta, and alpha (polymerase) subunits. Using oligonucleotides with specific terminal mismatches, we have found that both epsilon and pol III core preferentially excise a mispaired 3' terminus and therefore have intrinsic editing specificity. For both epsilon and pol III core, exonuclease activity is much more effective with single-strand DNA; with a double-strand DNA, the exonuclease is strongly temperature-dependent. We conclude that the epsilon subunit of pol III holoenzyme is itself a specific editing exonuclease and that the source of specificity is the greater melting capacity of a mispaired 3' terminus.  相似文献   

20.
DNA polymerase eta synthesizes DNA in vitro with low fidelity. Based on this, here we report the effects of deletion or increased expression of yeast RAD30 gene, encoding for polymerase eta (Pol eta), on spontaneous mutagenesis in vivo. Deletion of RAD30 did not affect spontaneous mutagenesis. Overproduction of Rad30p was slightly mutagenic in a wild-type yeast strain and moderately mutagenic in strains with inactive 3'-->5'-exonuclease of DNA polymerase epsilon or DNA mismatch repair. These data suggest that excess Rad30p reduces replication fidelity in vivo and that the induced errors may be corrected by exonucleolytic proofreading and DNA mismatch repair. However, the magnitude of mutator effect (only up to 10-fold) suggests that the replication fork is protected from inaccurate synthesis by Pol eta in the absence of DNA damage. Overproduction of catalytically inactive Rad30p was also mutagenic, suggesting that much of the mutator effect results from indirect perturbation of replication rather than from direct misincorporation by Pol eta. Moreover, while excess wild-type Pol eta primarily induced base substitutions in the msh6 and pms1 strains, excess inactive Rad30p induced both base substitutions and frameshifts. This suggests that more than one mutagenic mechanism is operating when RAD30 is overexpressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号