首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme carrier HasA has a unique type of histidine/tyrosine heme iron ligation in which the iron ion is in a thermally driven two spin states equilibrium. We recently suggested that the H-bonding between Tyr75 and the invariantly conserved residue His83 modulates the strength of the iron-Tyr75 bond. To unravel the role of His83, we characterize the iron ligation and the electronic properties of both wild type and H83A mutant by a variety of spectroscopic techniques. Although His83 in wild type modulates the strength of the Tyr-iron bond, its removal causes detachment of the tyrosine ligand, thus giving rise to a series of pH-dependent equilibria among species with different axial ligation. The five coordinated species detected at physiological pH may represent a possible intermediate of the heme transfer mechanism to the receptor.  相似文献   

2.
HasA(SM) secreted by the Gram-negative bacterium Serratia marcescens belongs to the hemophore family. Its role is to take up heme from host heme carriers and to shuttle it to specific receptors. Heme is linked to the HasA(SM) protein by an unusual axial ligand pair: His32 and Tyr75. The nucleophilic nature of the tyrosine is enhanced by the hydrogen bonding of the tyrosinate to a neighboring histidine in the binding site: His83. We used isothermal titration microcalorimetry to examine the thermodynamics of heme binding to HasA(SM) and showed that binding is strongly exothermic and enthalpy driven: DeltaH = -105.4 kJ x mol(-1) and TDeltaS = -44.3 kJ x mol(-1). We used displacement experiments to determine the affinity constant of HasA(SM) for heme (K(a) = 5.3 x 10(10) M(-1)). This is the first time that this has been reported for a hemophore. We also analyzed the thermodynamics of the interaction between heme and a panel of single, double, and triple mutants of the two axial ligands His32 and Tyr75 and of His83 to assess the implication of each of these three residues in heme binding. We demonstrated that, in contrast to His32, His83 is essential for the binding of heme to HasA(SM), even though it is not directly coordinated to iron, and that the Tyr75/His83 pair plays a key role in the interaction.  相似文献   

3.
4.
HasA is an extracellular heme binding protein, and HasR is an outer membrane receptor protein from Serratia marcescens. They are the initial partners of a heme internalization system allowing S. marcescens to scavenge heme at very low concentrations due to the very high affinity of HasA for heme (Ka = 5,3 x 10(10) m(-1)). Heme is then transferred to HasR, which has a lower affinity for heme. The mechanism of the heme transfer between HasA and HasR is largely unknown. HasR has been overexpressed and purified in holo and apo forms. It binds one heme molecule with a Ka of 5 x 10(6) m(-1) and shows the characteristic absorbance spectrum of a low spin heme iron. Both holoHasA and apoHasA bind tightly to apoHasR in a 1:1 stoichiometry. In this study we show that heme transfer occurs in vitro in the purified HasA.HasR complex, demonstrating that heme transfer is energy- and TonB complex-independent and driven by a protein-protein interaction. We also show that heme binding to HasR involves two conserved histidine residues.  相似文献   

5.
A heme-acquisition system present in several Gram-negative bacteria requires the secretion of hemophores. These extracellular carrier proteins capture heme and deliver it to specific outer membrane receptors. The Serratia marcescens HasA hemophore is a monodomain protein that binds heme with a very high affinity. Its α/β structure, as that of its binding pocket, has no common features with other iron- or heme-binding proteins. Heme is held by two loops L1 and L2 and coordinated to iron by an unusual ligand pair, H32/Y75. Two independent regions of the hemophore β-sheet are involved in HasA-HasR receptor interaction. Here, we report the 3-D NMR structure of apoHasA and the backbone dynamics of both loaded and unloaded hemophore. While the overall structure of HasA is very similar in the apo and holo forms, the hemophore presents a transition from an open to a closed form upon ligand binding, through a large movement, of up to 30 Å, of loop L1 bearing H32. Comparison of loaded and unloaded HasA dynamics on different time scales reveals striking flexibility changes in the binding pocket. We propose a mechanism by which these structural and dynamic features provide the dual function of heme binding and release to the HasR receptor.  相似文献   

6.
Hemophores are secreted by several gram-negative bacteria (Serratia marcescens, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Yersinia pestis) and form a family of homologous proteins. Unlike the S. marcescens hemophore (HasA(SM)), the P. fluorescens hemophore HasA(PF) has an additional region of 12 residues located immediately upstream from the C-terminal secretion signal. We show that HasA(PF) undergoes a C-terminal cleavage which removes the last 21 residues when secreted from P. fluorescens and that only the processed form is able to deliver heme to the S. marcescens outer membrane hemophore-specific receptor, HasR(SM). Functional analysis of variants including those with an internal deletion of the extra C-terminal domain show that the secretion signal does not inhibit the biological activity, whereas the 12-amino-acid region located upstream does. This extra domain may inhibit the interaction of the hemophore with HasR(SM). To localize the hemophore regions involved in binding to HasR, chimeric HasA(PF)-HasA(SM) proteins were tested for biological activity. We show that residues 153 to 180 of HasA(PF) are necessary for its interaction with the receptor.  相似文献   

7.
Soluble guanylate cyclase is an NO-sensing hemoprotein that serves as a NO receptor in NO-mediated signaling pathways. It has been believed that this enzyme displays no measurable affinity for O(2), thereby enabling the selective NO sensing in aerobic environments. Despite the physiological significance, the reactivity of the enzyme-heme for O(2) has not been examined in detail. In this paper we demonstrated that the high spin heme of the ferrous enzyme converted to a low spin oxyheme (Fe(2+)-O(2)) when frozen at 77 K in the presence of O(2). The ligation of O(2) was confirmed by EPR analyses using cobalt-substituted enzyme. The oxy form was produced also under solution conditions at -7 °C, with the extremely low affinity for O(2). The low O(2) affinity was not caused by a distal steric protein effect and by rupture of the Fe(2+)-proximal His bond as revealed by extended x-ray absorption fine structure. The midpoint potential of the enzyme-heme was +187 mV, which is the most positive among high spin protoheme-hemoproteins. This observation implies that the electron density of the ferrous heme iron is relatively low by comparison to those of other hemoproteins, presumably due to the weak Fe(2+)-proximal His bond. Based on our results, we propose that the weak Fe(2+)-proximal His bond is a key determinant for the low O(2) affinity of the heme moiety of soluble guanylate cyclase.  相似文献   

8.
Prostaglandin H(2) synthesis by prostaglandin endoperoxide synthase (PGHS) requires the heme-dependent activation of the protein's cyclooxygenase activity. The PGHS heme participates in cyclooxygenase activation by accepting an electron from Tyr385 located in the cyclooxygenase active site. Two mechanisms have been proposed for the oxidation of Tyr385 by the heme iron: (1) ferric enzyme oxidizes a hydroperoxide activator and the incipient peroxyl radical oxidizes Tyr385, or (2) ferric enzyme reduces a hydroperoxide activator and the incipient ferryl-oxo heme oxidizes Tyr385. The participation of ferrous PGHS in cyclooxygenase activation was evaluated by determining the reduction potential of PGHS-2. Under all conditions tested, this potential (<-135 mV) was well below that required for reactions leading to cyclooxygenase activation. Substitution of the proximal heme ligand, His388, with tyrosine was used as a mechanistic probe of cyclooxygenase activation. His388Tyr PGHS-2, expressed in insect cells and purified to homogeneity, retained cyclooxygenase activity but its peroxidase activity was diminished more than 300-fold. Concordant with this poor peroxidase activity, an extensive lag in His388Tyr cyclooxygenase activity was observed. Addition of hydroperoxides resulted in a concentration-dependent decrease in lag time consistent with each peroxide's ability to act as a His388Tyr peroxidase substrate. However, hydroperoxide treatment had no effect on the maximal rate of arachidonate oxygenation. These data imply that the ferryl-oxo intermediates of peroxidase catalysis, but not the Fe(III)/Fe(II) couple of PGHS, are essential for cyclooxygenase activation. In addition, our findings are strongly supportive of a branched-chain mechanism of cyclooxygenase catalysis in which one activation event leads to many cyclooxygenase turnovers.  相似文献   

9.
The benzylindazole compound YC-1 has been shown to activate soluble guanylate cyclase by increasing the sensitivity toward NO and CO. Here we report the action of YC-1 on the coordination of CO- and NO-hemes in the enzyme and correlate the events with the activation of enzyme catalysis. A single YC-1-binding site on the heterodimeric enzyme was identified by equilibrium dialysis. To explore the affect of YC-1 on the NO-heme coordination, the six-coordinate NO complex of the enzyme was stabilized by dibromodeuteroheme substitution. Using the dibromodeuteroheme enzyme, YC-1 converted the six-coordinate NO-heme to a five-coordinate NO-heme with a characteristic EPR signal that differed from that in the absence of YC-1. These results revealed that YC-1 facilitated cleavage of the proximal His-iron bond and caused geometrical distortion of the five-coordinate NO-heme. Resonance Raman studies demonstrated the presence of two iron-CO stretch modes at 488 and 521 cm(-1) specific to the YC-1-bound CO complex of the native enzyme. Together with the infrared C-O stretching measurements, we assigned the 488-cm(-1) band to the iron-CO stretch of a six-coordinate CO-heme and the 521-cm(-1) band to the iron-CO stretch of a five-coordinate CO-heme. These results indicate that YC-1 stimulates enzyme activity by weakening or cleaving the proximal His-iron bond in the CO complex as well as the NO complex.  相似文献   

10.
A survey is presented of picosecond kinetics of heme-residue bond formation after photolysis of histidine, methionine, or cysteine, in a broad range of ferrous six-coordinate heme proteins. These include human neuroglobin, a bacterial heme-binding superoxide dismutase (SOD), plant cytochrome b 559, the insect nuclear receptor E75, horse heart cytochrome c and the heme domain of the bacterial sensor protein Dos. We demonstrate that the fastest and dominant phase of binding of amino acid residues to domed heme invariably takes place with a time constant in the narrow range of 5-7 ps. Remarkably, this is also the case in the heme-binding SOD, where the heme is solvent-exposed. We reason that this fast phase corresponds to barrierless formation of the heme-residue bond from a configuration close to the bound state. Only in proteins where functional ligand exchange occurs, additional slower rebinding takes place on the time scale of tens of picoseconds after residue dissociation. We propose that the presence of these slower phases reflects flexibility in the heme environment that allows external ligands (O2, CO, NO, . . .) to functionally replace the internal residue after thermal dissociation of the heme-residue bond.  相似文献   

11.
An examination of the X-ray structure of the soluble fumarate reductase from Shewanella frigidimarina [Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112] shows the presence of four, bis-His-ligated, c-type hemes and one flavin adenine dinucleotide, FAD. The heme groups provide a "molecular wire" for the delivery of electrons to the FAD. Heme IV is closest to the FAD (7.4 A from heme methyl to FAD C7), and His61, a ligand to heme IV, is also close (8.4 A to FAD C7). Electron delivery to the FAD from the heme groups must proceed via heme IV, as hemes I-III are too far from the FAD for feasible electron transfer. To examine the importance of heme IV and its ligation for enzyme function, we have substituted His61 with both methionine and alanine. Here we describe the crystallographic, kinetic, and electrochemical characterization of the H61M and H61A mutant forms of the Shewanella fumarate reductase. The crystal structures of these mutant forms of the enzyme have been determined to 2.1 and 2.2 A resolution, respectively. Substitution of His61 with alanine results in heme IV having only one protein ligand (His86), the sixth coordination position being occupied by an acetate ion derived from the crystal cryoprotectant solution. In the structure of the H61M enzyme, Met61 is found not to ligate the heme iron, a role that is taken by a water molecule. Apart from these features, there are no significant structural alterations as a result of either substitution. Both the H61M-Fcc(3) and H61A-Fcc(3) mutant enzymes are catalytically active but exhibit marked decreases in the value of k(cat) for fumarate reduction with respect to that of the wild type (5- and 10-fold lower, respectively). There is also a significant shift in the pK(a) values for the mutant enzymes, from 7.5 for the wild type to 8.26 for H61M and 9.29 for H61A. The fumarate reductase activity of both mutant enzymes can be recovered to approximately 80% of that seen for the wild type by the addition of exogenous imidazole. In the case of H61A, recovery of activity is also accompanied by a shift of the pK(a) from 9.29 to 7.46 (close, and within experimental error, to that for the wild type). Pre-steady-state kinetic measurements show clearly that rate constants for the fumarate dependent reoxidation of the heme groups are adversely affected by the mutations. The solvent isotope effect for fumarate reduction in the wild-type enzyme has a value of 8.0, indicating that proton delivery is substantially rate limiting. This value falls to 5.6 and 2.2 for the H61M and H61A mutants, respectively, indicating that electron transfer, rather than proton transfer, is becoming more rate-limiting in the mutant enzymes.  相似文献   

12.
Andrew CR  Green EL  Lawson DM  Eady RR 《Biochemistry》2001,40(13):4115-4122
Resonance Raman (RR) studies have been conducted on Alcaligenes xylosoxidans cytochrome c', a mono-His ligated hemoprotein which reversibly binds NO and CO but not O(2). Recent crystallographic characterization of this protein has revealed the first example of a hemoprotein which can utilize both sides of its heme (distal and proximal) for binding exogenous ligands to its Fe center. The present RR investigation of the Fe coordination and heme pocket environments of ferrous, carbonyl, and nitrosyl forms of cytochrome c' in solution fully supports the structures determined by X-ray crystallography and offers insights into mechanisms of ligand discrimination in heme-based sensors. Ferrous cytochrome c' reacts with CO to form a six-coordinate heme-CO complex, whereas reaction with NO results in cleavage of the proximal linkage to give a five-coordinate heme-NO adduct, despite the relatively high stretching frequency (231 cm(-1)) of the ferrous Fe-N(His) bond. RR spectra of the six-coordinate CO adduct indicate that CO binds to the Fe in a nonpolar environment in line with its location in the hydrophobic distal heme pocket. On the other hand, RR data for the five-coordinate NO adduct suggest a positively polarized environment for the NO ligand, consistent with its binding close to Arg 124 on the opposite (proximal) side of the heme. Parallels between certain physicochemical properties of cytochrome c' and those of heme-based sensor proteins raise the possibility that the latter may also utilize both sides of their hemes to discriminate between NO and CO binding.  相似文献   

13.
The HasA(SM) hemophore, secreted by Serratia marcescens, binds free or hemoprotein bound heme with high affinity and delivers it to a specific outer membrane receptor, HasR. In HasA(SM), heme is held by two loops and coordinated to iron by two residues, His 32 and Tyr 75. A third residue His 83 was shown recently to play a crucial role in heme ligation. To address the mechanistic issues of the heme capture and release processes, the histidine protonation states were studied in both apo- and holo-forms of HasA(SM) in solution. Holo-HasA(SM) was formed with gallium-protoporphyrin IX (GaPPIX), giving rise to a diamagnetic protein. By use of heteronuclear correlation NMR spectroscopy, the imidazole side-chain (15)N and (1)H resonances of the six HasA(SM) histidines were assigned and their pKa values and predominant tautomeric states according to pH were determined. We show that protonation states of the heme pocket histidines can modulate the nucleophilic character of the two axial ligands and, consequently, control the heme binding. In particular, the essential role of the His 83 is emphasized according to its direct interaction with Tyr 75.  相似文献   

14.
Heme proteins represent a diverse class of biomolecules responsible for an extremely diverse array of physiological functions including electron transport, monooxygenation, ligand transport and storage, cellular signaling, respiration, etc. An intriguing aspect of these proteins is that such functional diversity is accomplished using a single type of heme macrocycle based upon iron protoporphyrin IX. The functional diversity originates from a delicate balance of inter-molecular interactions within the protein matrix together with well choreographed dynamics that modulate the heme electronic structure as well as ligand entry/exit pathways from the bulk solvent to the active site. Of particular interest are the dynamics and energetics associated with the entry/exit of ligands as this process plays a significant role in regulating the rates of heme protein activity. Time-resolved photoacoustic calorimetry (PAC) has emerged as a powerful tool through which to probe the underlying energetics associated with small molecule dissociation and release to the bulk solvent in heme proteins on time scales from tens of nanoseconds to several microseconds. In this review, the results of PAC studies on various classes of heme proteins are summarized highlighting how different protein structures affect the thermodynamics of ligand migration. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   

15.

Background

The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity.

Methodology/Principal Findings

To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding.

Conclusions

Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases.  相似文献   

16.
Accumulating evidence indicates that the functional properties of soluble guanylyl cyclase (sGC) are affected not only by the binding of NO but also by the NO:sGC ratio and a number of cellular factors, including GTP. In this study, we monitored the time-resolved transformations of sGC and sGC-NO complexes generated with stoichiometric or excess NO in the presence and absence of GTP. We demonstrate that the initial five-coordinate sGC-NO complex is highly activated by stoichiometric NO but is unstable and transforms into a five-coordinate sGC-2 state. This sGC-2 rebinds NO to form a low activity sGC-NO complex. The stability of the initial complex is greatly enhanced by GTP binding, binding of an additional NO molecule, or substitution of βHis-107. We propose that the transient nature of the sGC-NO complex, the formation of a desensitized sGC-2 state, and its transformation into a low activity sGC-NO adduct require βHis-107. We conclude that conformational changes leading to sGC desensitization may be prevented by GTP binding to the catalytic site or by binding of an additional NO molecule to the proximal side of the heme. The implications of these observations for cellular NO/cGMP signaling and the process of rapid desensitization of sGC are discussed in the context of the proposed model of sGC/NO interactions and dynamic transformations.  相似文献   

17.
Martin E  Berka V  Sharina I  Tsai AL 《Biochemistry》2012,51(13):2737-2746
Soluble guanylyl cyclase (sGC), the key enzyme for the formation of second messenger cyclic GMP, is an authentic sensor for nitric oxide (NO). Binding of NO to sGC leads to strong activation of the enzyme activity. Multiple molecules and steps of binding of NO to sGC have been implicated, but the target of the second NO and the detailed binding mechanism remain controversial. In this study, we used (15)NO and (14)NO and anaerobic sequential mixing-freeze-quench electron paramagnetic resonance to unambiguously confirm that the heme Fe is the target of the second NO. The linear dependence on NO concentration up to 600 s(-1) for the observed rate of the second step of NO binding not only indicates that the binding site of the second NO is different from that in the first step, i.e., the proximal site of the heme, but also supports a concerted mechanism in which the dissociation of the His105 proximal ligand occurs simultaneously with the binding of the second NO molecule. Computer modeling successfully predicts the kinetics of formation of a set of five-coordinate NO complexes with the ligand on either the distal or proximal site and supports the selective release of NO from the distal side of the transient bis-NO-sGC complex. Thus, as has been demonstrated with cytochrome c', a five-coordinate NO-sGC complex containing a proximal NO is formed after the binding of the second NO.  相似文献   

18.
We used carefully defined heme-hemopexin complexes to investigate the role of hemopexin in the catabolism of heme in vivo. Uptake of rabbit [59Fe]heme-[125I]hemopexin by rat liver was rapid. The liver-associated 125I reached a maximum 5 minutes after injection, nearly 7-fold higher than apo-hemopexin, whereas liver-associated 59Fe increased with time. This together with an inverse relationship of [125I]hemopexin in the liver and serum during the course of heme transport suggests that hemopexin was released from the liver back to the circulation. Saturation of uptake with heme-hemopexin, reaching about 170 pmol [125I]hemopexin (gm liver)?1 5 minutes after injection of 11 nmol, indicates a receptor-mediated process.We conclude that hemopexin delivers heme to the liver via interaction with a finite number of receptors and returns to the circulation.  相似文献   

19.
The synthesis, purification as a tetrafluoroborate salt and structural elucidation of the verdohemochrome 2a derived from the coupled oxidation of octaethylhemochrome 1 is described. Based on elemental analyses, spectroscopic studies (visible and infrared absorption, 1H-NMR) and fast atom bombardment mass spectrometry, the assignment of the iron(II) oxaporphyrin structure for the verdohemochrome 2a and the blue monocarbonyl species 2b, obtained upon treatment of 2a with carbon monoxide, has been accomplished. This assignment raises a number of questions regarding the iron oxidation state of intermediates in the pathway of heme catabolism both in vitro and in vivo. Furthermore, the implications of the occurrence of an iron oxaporphyrin intermediate in the pathway of heme metabolism, which is suggested by the similarity of the visible absorption spectrum of the CO species 2b with that of a new intermediate recently observed in the heme oxygenase-catalyzed degradition of heme and mesoheme, is considered.  相似文献   

20.
The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin has been implicated in adipocyte differentiation, lipid droplet (LD) formation, and motor neuron development. However, the molecular function of seipin and its disease-causing mutants remains to be elucidated. Here, we characterize seipin and its mis-sense mutants: N88S/S90L (both linked to motoneuron disorders) and A212P (linked to lipodystrophy) in cultured mammalian cells. Knocking down seipin significantly increases oleate incorporation into triacylglycerol (TAG) and the steady state level of TAG, and induces the proliferation and clustering of small LDs. By contrast, overexpression of seipin reduces TAG synthesis, leading to decreased formation of LDs. Expression of the A212P mutant, however, had little effect on LD biogenesis. Surprisingly, expression of N88S or S90L causes the formation of many small LDs reminiscent of seipin deficient cells. This dominant-negative effect may be due to the N88S/S90L-induced formation of inclusions where wild-type seipin can be trapped. Importantly, coexpression of wild-type seipin and the N88S or S90L mutant can significantly reduce the formation of inclusions. Finally, we demonstrate that seipin can interact with itself and its mutant forms. Our results provide important insights into the biochemical characteristics of seipin and its mis-sense mutants, and suggest that seipin may function to inhibit lipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号