首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibited enzyme electrodes. Part 3. A sensor for low levels of H2S and HCN   总被引:1,自引:0,他引:1  
It is shown that an inhibited enzyme electrode, using cytochrome oxidase, will respond to H2S, HCN and azide ion. For all three inhibitors the kinetics of the inhibiton and recovery processes have been analysed using the theoretical model presented previously (Albery et al., 1990a). Rearrangement of the differential equation describing inhibition and the development of the necessary software has enabled us to obtain values of the concentration of inhibitor in a matter of seconds after exposure of the sensor. The sensor will measure concentrations of H2S down to 1 ppm in the gas phase and concentrations of HCN and azide ion down to 0.4 mumol dm-3 in the solution phase.  相似文献   

2.
The CAT/PANi/ITO bioelectrode has been prepared as a catalase biosensor and shows response for monitoring not only of H2O2 but also azide. The sensor exhibited an excellent response to the H2O2 and azide. The linear range of H2O2 was 0.064∼1 mM and for azide 0.125∼4 mM, respectively. Catalase biosensor was based on the principle of the measurements as the decrease in the differentiation of oxygen level, which has been caused by the inhibition of catalase in the bioactive layer of the biosensor by azide. The repeatability experiments were done in triplicate. The logarithm response of the biosensor to H2O2 (r2 = 0.99), as well as, for azide (r2 = 0.90) were reported, respectively. The bioelectrode was characterized by CV and AFM. The proposed biosensor would be applied for the determination of H2O2 and azide in various biological samples.  相似文献   

3.
An anion-sensitive ATP-dependent H+ transport in microsomal membranes from Zea mays L. coleoptiles was partially characterized using the pH gradient-dependent decrease of unprotonated neutral red. The following criteria strongly suggest a tonoplast origin of the H+ transport observed: strict dependence on Cl; inhibition by SO42− and NO3; insensitivity against vanadate, molybdate, and azide; reversible inhibition by CaCl2 (H+/Ca2+ antiport); inhibition by diethylstilbestrol. The substrate kinetics revealed simple Michaelis Menten kinetics for ATP in the presence of 1 millimolar MgCl2 with a Km value of 0.56 millimolar (0.38 millimolar for MgATP). AMP and c-AMP did not influence H+ transport significantly. However, ADP was a potent competitive inhibitor with a Ki value of 0.18 millimolar. The same inhibition type was found for membranes prepared from primary roots by the same procedure.  相似文献   

4.
Studying the interaction of some atmospheric gases (H2O, HCN, NH3, SO3 and H2S) with 3PT oligomers is important in the development of polymeric sensors for gas detection. In the present study, we studied the relaxed geometries, interaction energies, charge analysis, HOMO–LUMO orbital analysis, and UV–vis spectra of all interacted systems using first-principles density functional theory (DFT). All these analyses indicated the potential of polythiophene as an inexpensive polymeric sensor for the analytes mentioned. Interaction energy values of ?19.90, ?19.66, ?14.01, ?8.70, and ?4.76 kJ mol?1 were achieved for adsorption of SO3, H2O, NH3, HCN, and H2S on 3PT, respectively. Consequently, clarification of their physical parameters became the major focus of this study.  相似文献   

5.
The active transport of CO2 in the cyanobacterium Synechococcus UTEX 625 was inhibited by H2S. Treatment of the cells with up to 150 micromolar H2S + HS at pH 8.0 had little effect on Na+-dependent HCO3 transport or photosynthetic O2 evolution, but CO2 transport was inhibited by more than 90%. CO2 transport was restored when H2S was removed by flushing with N2. At constant total H2S + HS concentrations, inhibition of CO2 transport increased as the ratio of H2S to HS increased, suggesting a direct role for H2S in the inhibitory process. Hydrogen sulfide does not appear to serve as a substrate for transport. In the presence of H2S and Na+ -dependent HCO3 transport, the extracellular CO2 concentration rose considerably above its equilibrium level, but was maintained far below its equilibrium level in the absence of H2S. The inhibition of CO2 transport, therefore, revealed an ongoing leakage from the cells of CO2 which was derived from the intracellular dehydration of HCO3 which itself had been recently transported into the cells. Normally, leaked CO2 is efficiently transported back into the cell by the CO2 transport system, thus maintaining the extracellular CO2 concentration near zero. It is suggested that CO2 transport not only serves as a primary means of inorganic carbon acquisition for photosynthesis but also serves as a means of recovering CO2 lost from the cell. A schematic model describing the relationship between the CO2 and HCO3 transport systems is presented.  相似文献   

6.
Yields based on carbon are usually reported in prebiotic experiments, while energy yields (moles cal–1) are more useful in estimating the yields of products that would have been obtained from the primitive atmosphere of the earth. Energy yields for the synthesis of HCN and H2CO from a spark discharge were determined for various mixtures of CH4, CO, CO2, H2, H2O, N2 and NH3. The maximum yields of HCN and H2CO from CH4, CO, and CO2 as carbon sources are about 4×10–8 moles cal–1.  相似文献   

7.
Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.  相似文献   

8.
Nitrogen fixation (C2H2 reduction) in a sediment-water system was studied under anaerobic incubation conditions. Sodium sulfide at low concentrations stimulated activity, with a twofold increase in C2H4 production occurring in the presence of 8 μmol of S2− per ml of stream water. Sodium sulfide at concentrations of 16 μmol of S2− per ml or greater inhibited nitrogen fixation, with 64 μmol of S2− per ml being completely inhibitory. Sulfide at levels of 16 μmol/ml or above inhibited CO2 production, and the degree of inhibition increased with increasing concentration of sulfide. Titanium (III) citrate (used to modify Eh levels) stimulated both nitrogen fixation and CO2 production, but could not duplicate, at any concentration tested, the twofold increase in nitrogen fixation caused by 8 μmol of S2− per ml. Sulfide additions caused pH changes in the sediment, and when the sediment was adjusted and maintained at pH 7.0 all concentrations of sulfide inhibited nitrogen fixation activity. From considerations of the redox equilibria of H2, H2S, and other sulfur species at various pH values, it appeared that H2S was the toxic entity and that HS was less toxic. The observed stimulation of activity was apparently due to a pH change coupled with the concurrent production of HS from H2S.  相似文献   

9.
Forti G  Gerola P 《Plant physiology》1977,59(5):859-862
Cyanide and azide inhibit photosynthesis and catalase activity of isolated, intact spinach (Spinacia oleracea) chloroplasts. When chloroplasts are illuminated in the presence of CN or N3, accumulation of H2O2 is observed, parallel to inhibition of photosynthesis. Photosynthetic O2 evolution is inhibited to the same extent, under saturating light, whether CO2 or phosphoglycerate is present as electron acceptor.  相似文献   

10.
A method for determination of α-ketoisocaproic acid (KIC) and [4,5,5,5,6,6,6-2H7]α-ketoisocaproic acid ([2H7]KIC) in rat plasma was developed using gas chromatography–mass spectrometry-selected ion monitoring (GC–MS-SIM). [5,5,5-2H3]α-Ketoisocaproic acid ([2H3]KIC) was used as an analytical internal standard to account for losses associated with the extraction, derivatization and chromatography. The keto acids were extracted by cation-exchange chromatography using BondElut SCX cartridge and derivatized with N-phenyl-1,2-phenylenediamine to form N-phenylquinoxalinone derivatives. Quantitation was performed by SIM of the respective molecular ions at m/z 278, 281 and 285 for the derivatives of KIC, [2H3]KIC and [2H7]KIC on the electron impact method. The limit of detection was found to be 70 fmol per injection (S/N=3) and the limit of quantitation for [2H7]KIC was around 50 nM in rat plasma. Endogenous KIC concentrations in 50 μl of rat plasma were measured with relative intra- and inter-day precision of 4.0% and 3.3%, respectively. The intra- and inter-day precision for [2H7]KIC spiked to rat plasma in the range of 0.1 to 10 μM gave good reproducibility with relative standard deviation (RSD) of 6.5% and 5.4%, respectively. The intra- and inter-day relative errors (RE) for [2H7]KIC were less than 6.4% and 3.8%, respectively. The method was applied to determine the plasma concentration of [2H7]KIC after an intravenous administration of [2H7]KIC in rat.  相似文献   

11.
The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H2S is not. NO and H2S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H2S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.  相似文献   

12.
The effect of the sulfhydryl reagents (—SH) p-chloromercuribenzene-sulfonic acid (PCMBS), N-ethylmaleimide (NEM), and inorganic mercury on H14CO3 assimilation in Chara corallina is reported. Commercial grade PCMBS caused severe inhibition of H14CO3 assimilation. Results obtained using purified PCMBS (stock solution passed through a chelating resin) indicated that inhibition observed using unpurified PCMBS was due predominantly to the presence of inorganic mercury (as a contaminant). The inhibitory role of inorganic mercury was verified using HgCl2. This chemical caused a dramatic inhibition of H14CO3 assimilation, while it had little effect on cellular 14CO2 fixation. Reversal of the Hg2+ inhibition of H14CO3 assimilation (in presence of 1.0 millimolar dithioerythritol) was extremely slow, requiring 2 to 3 hours for the reestablishment of control rates. This slow recovery may reflect de novo synthesis of transport proteins.  相似文献   

13.
Production and Consumption of Hydrogen in a Eutrophic Lake   总被引:1,自引:4,他引:1       下载免费PDF全文
The vertical distribution of hydrogen was measured in the Loclat, a eutrophic and holomictic lake near Neuchâtel, Switzerland, before and during summer stratification. H2 concentrations decreased with depth in the anaerobic hypolimnion and were often below the detection limit (2.5 nl of H2 liter−1) in the water adjacent to the lake sediment. H2 was apparently not released from the lake sediment. The highest H2 concentrations (>4 μl of H2 liter−1) were observed in the aerobic water of the epilimnion and metalimnion. There, the H2 concentrations changed with time, indicating a turnover of H2. The H2 production processes could not be studied in the laboratory since incubation of water samples in light or darkness did not result in H2 production but rather always in H2 consumption. The possible role of cyanobacteria and algae for H2 production is discussed. Aerobic or anaerobic H2 consumption activities were observed at all depths of the water column, with highest activities in the hypolimnion. Aerobic H2 consumption activity was insensitive to azide inhibition, but sensitive to heat, mercuric chloride, or cyanide. It was restricted to a particle fraction of 0.2 to 3.0 μm in size, so that it must be due to single bacterial cells. Aerobic hydrogen bacteria, on the other hand, occurred in clusters of >3.0 μm. Therefore, the hydrogen bacteria could not have caused the H2 consumption in lake water. The aerobic H2 consumption activity followed Michaelis-Menten kinetics, with a Km of 67 nM H2. This is an exceptionally low value compared with Km values of hydrogenases in hydrogen bacteria and other species, but is similar to that for H2-decomposing abiontic soil hydrogenases.  相似文献   

14.
Benthic cyanobacterial mats with the filamentous Microcoleus chthonoplastes as the dominant phototroph grow in oxic hypersaline environments such as Solar Lake, Sinai. The cyanobacteria are in situ exposed to chemical variations between 200 μmol of sulfide liter−1 at night and 1 atm pO2 during the day. During experimental H2S to O2 transitions the microbial community was shown to shift from anoxygenic photosynthesis, with H2S as the electron donor, to oxygenic photosynthesis. Microcoleus filaments could carry out both types of photosynthesis concurrently. Anoxygenic photosynthesis dominated at high sulfide levels, 500 μmol liter−1, while the oxygenic reaction became dominant when the sulfide level was reduced below 100 to 300 μmol liter−1 (25 to 75 μmol of H2S liter−1). An increasing inhibition of the oxygenic photosynthesis was observed upon transition to oxic conditions from increasing sulfide concentrations. Oxygen built up within the Microcoleus layer of the mat even under 5 mmol of sulfide liter−1 (500 μmol of H2S liter−1) in the overlying water. The implications of such a localized O2 production in a highly reducing environment are discussed in relation to the evolution of oxygenic photosynthesis during the Proterozoic era.  相似文献   

15.
Hydrogen sulfide is now accepted as a neuromodulator, which can be involved in neuronal defence against oxidative stress insults in the brain. In this work we show that concentrations of H2S within the physiological range reported in the brain produce a reversible inhibition of the NADH oxidase activity and coupled superoxide anion production by synaptic plasma membranes from rat brain. At physiological pH 7 the concentration of H2S needed for 50% inhibition of the NADH oxidase activity is 5 ± 1 μM, which is within the low range of the reported physiological H2S concentrations. Thus, the NADH oxidase activity of the neuronal plasma membrane can act as a sensor of local H2S depletion in neurones. H2S inhibition of the NADH oxidase activity of the neuronal plasma membrane can be accounted for direct reduction by H2S of cytochrome b5. However, H2S fails to afford a significant protection against the inhibition of this activity by peroxynitrite. In conclusion, our results point out that H2S is more potent as inhibitor of reactive oxygen species formation than as a sacrificial antioxidant.  相似文献   

16.
17.
A thermochemical-hydrodynamic model of the production of trace species by electrical discharges has been used to estimate the rates of fixation of C and N by lightning in the primitive atmosphere. Calculations for various possible mixtures of CH4, CO2, N2, H2, and H2O reveal that the prime species produced were probably HCN and NO and that the key parameter determining the rates of fixation was the ratio of C atoms to O atoms in the atmosphere. Atmospheres with C more abundant than O have large HCN fixation rates, in excess of 1017 molecules J–1, but small NO yields. However, when O is more abundant than C, the NO fixation rate approaches 1017 molecules J–1 while the HCN yield is small. The implications for the evolution of life are discussed.  相似文献   

18.
In the present study, we investigated the pharmacological action of hydrogen sulfide (H2S, using sodium hydrosulfide, NaHS, and/or sodium sulfide, Na2S as donors) on sympathetic neurotransmission from isolated, superfused porcine iris-ciliary bodies. We also examined the effect of H2S on norepinephrine (NE), dopamine and epinephrine concentrations in isolated porcine anterior uvea. Release of [3H]NE was triggered by electrical field stimulation and basal catecholamine concentrations was measured by high performance liquid chromatography (HPLC). Both NaHS and Na2S caused a concentration-dependent inhibition of electrically evoked [3H]NE release from porcine iris-ciliary body without affecting basal [3H]NE efflux. The inhibitory action of H2S donors on NE release was attenuated by aminooxyacetic acid (AOA) and propargyglycine (PAG), inhibitors of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), respectively. With the exception of dopamine, NaHS caused a concentration-dependent reduction in endogenous NE and epinephrine concentrations in isolated iris-ciliary bodies. We conclude that H2S can inhibit sympathetic neurotransmission from isolated porcine anterior uvea, an effect that is dependent, at least in part, on intramural biosynthesis of this gas. Furthermore, the observed action of H2S donors on sympathetic transmission may be due to a direct action of this gas on neurotransmitter pools.  相似文献   

19.
One-pot reaction of cobalt(II) nitrate hexahydrate Co(NO3)2 · 6H2O with H2salpn (N,N′-bis(salicylidene)-1,3-diaminopropane) in presence of a large excess of sodium azide (NaN3) gives the new Co(III) compound {Na[CoIII(μ-salpn)(μ1,1-N3)2]}n (1), which was characterized by single crystal X-ray diffraction analysis. The crystal structure shows polymeric 1D complex generated by the hexadentate Schiff base salpn2− and two crystallographically different azide ligands. The two nitrogen atoms of the salpn ligand are bonded to the cobalt(III) ion while each phenoxo oxygen atom is bonded to the same Co(III) ion and to two equivalent sodium ions. Each azide ligand acts with the end-on bridging coordination mode between Co(III) and Na(I) ions. The Co(III) ion adopts a distorted octahedral geometry arising from two oxygen and two nitrogen atoms of the salpn ligand and from two nitrogen atoms of the two crystallographically different azide ligands in trans positions. Such [Co(salpn)(N3)2] entities are connected each other by sodium ions through four oxygen atoms of two equivalent Schiff base ligands and two nitrogen atom of the two different azide ligands to generate the 1D structure of 1.  相似文献   

20.
The redox cycle of 2,5-dimethoxybenzoquinone (2,5-DMBQ) is proposed as a source of reducing equivalent for the regeneration of Fe2+ and H2O2 in brown rot fungal decay of wood. Oxalate has also been proposed to be the physiological iron reductant. We characterized the effect of pH and oxalate on the 2,5-DMBQ-driven Fenton chemistry and on Fe3+ reduction and oxidation. Hydroxyl radical formation was assessed by lipid peroxidation. We found that hydroquinone (2,5-DMHQ) is very stable in the absence of iron at pH 2 to 4, the pH of degraded wood. 2,5-DMHQ readily reduces Fe3+ at a rate constant of 4.5 × 103 M−1s−1 at pH 4.0. Fe2+ is also very stable at a low pH. H2O2 generation results from the autoxidation of the semiquinone radical and was observed only when 2,5-DMHQ was incubated with Fe3+. Consistent with this conclusion, lipid peroxidation occurred only in incubation mixtures containing both 2,5-DMHQ and Fe3+. Catalase and hydroxyl radical scavengers were effective inhibitors of lipid peroxidation, whereas superoxide dismutase caused no inhibition. At a low concentration of oxalate (50 μM), ferric ion reduction and lipid peroxidation are enhanced. Thus, the enhancement of both ferric ion reduction and lipid peroxidation may be due to oxalate increasing the solubility of the ferric ion. Increasing the oxalate concentration such that the oxalate/ferric ion ratio favored formation of the 2:1 and 3:1 complexes resulted in inhibition of iron reduction and lipid peroxidation. Our results confirm that hydroxyl radical formation occurs via the 2,5-DMBQ redox cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号