首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated a thiamine auxotrophic mutant carrying a recessive mutation which lacks the positive regulatory gene, THI3, which differs in the regulation of thiamine transport from the THI2 (PHO6) gene described previously (Y. Kawasaki, K. Nosaka, Y. Kaneko, H. Nishimura, and A. Iwashima, J. Bacteriol. 172:6145-6147, 1990) for expression of thiamine metabolism in Saccharomyces cerevisiae. The mutant (thi3) had a markedly reduced thiamine transport system as well as reduced activity of thiamine-repressible acid phosphatase and of several enzymes for thiamine synthesis from 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-beta-hydroxyethylthiazole. These results suggest that thiamine metabolism in S. cerevisiae is subject to two positive regulatory genes, THI2 (PHO6) and THI3. We have also isolated a hybrid plasmid, pTTR1, containing a 6.2-kb DNA fragment from an S. cerevisiae genomic library which complements thiamine auxotrophy in the thi3 mutant. This gene was localized on a 3.0-kb ClaI-BglII fragment in the subclone pTTR5. Complementation of the activities for thiamine metabolism in the thi3 mutant transformed by some plasmids with the THI3 gene was also examined.  相似文献   

2.
3.
4.
5.
The physiological significance of thiaminase II, which catalyzes the hydrolysis of thiamin, has remained elusive for several decades. The C-terminal domains of THI20 family proteins (THI20/21/22) and the whole region of PET18 gene product of Saccharomyces cerevisiae are homologous to bacterial thiaminase II. On the other hand, the N-terminal domains of THI20 and THI21 encode 2-methyl-4-amino-5-hydroxymethylpyrimidine kinase and 2-methyl-4-amino-5-hydroxymethylpyrimidine phosphate kinase involved in the thiamin synthetic pathway. In this study, it was first indicated that the C-terminal domains of the THI20 family and PET18 are not required for de novo thiamin synthesis in S. cerevisiae, using a quadruple deletion strain expressing the N-terminal domain of THI20. Biochemical analysis using cell-free extracts and recombinant proteins demonstrated that yeast thiaminase II activity is exclusively encoded by THI20. It appeared that Thi20p has an affinity for the pyrimidine moiety of thiamin, and HMP produced by the thiaminase II activity is immediately phosphorylated. Thi20p was found to participate in the formation of thiamin from two synthetic antagonists, pyrithiamin and oxythiamin, by hydrolyzing both antagonists and phosphorylating HMP to give HMP pyrophosphate. Furthermore, 2-methyl-4-amino-5-aminomethylpyrimidine, a presumed naturally occurring thiamin precursor, was effectively converted to HMP by incubation with Thi20p. It is proposed that the thiaminase II activity of Thi20p is involved in the thiamin salvage pathway by catalyzing the hydrolysis of HMP precursors in S. cerevisiae.  相似文献   

6.
R Koren  J LeVitre  K A Bostian 《Gene》1986,41(2-3):271-280
  相似文献   

7.
The enzymatic properties of acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) encoded by PHO3 gene in Saccharomyces cerevisiae, which is repressed by thiamin and has thiamin-binding activity at pH 5.0, were investigated to study physiological functions. The following results led to the conclusion that thiamin-repressible acid phosphatase physiologically catalyzes the hydrolysis of thiamin phosphates in the periplasmic space of S. cerevisiae, thus participating in utilization of the thiamin moiety of the phosphates by yeast cells: (a) thiamin-repressible acid phosphatase showed Km values of 1.6 and 1.7 microM at pH 5.0 for thiamin monophosphate and thiamin pyrophosphate, respectively. These Km values were 2-3 orders of magnitude lower than those (0.61 and 1.7 mM) for p-nitrophenyl phosphate; (b) thiamin exerted remarkable competitive inhibition in the hydrolysis of thiamin monophosphate (Ki 2.2 microM at pH 5.0), whereas the activity for p-nitrophenyl phosphate was slightly affected by thiamin; (c) the inhibitory effect of inorganic phosphate, which does not repress the thiamin-repressible enzyme, on the hydrolysis of thiamin monophosphate was much smaller than that of p-nitrophenyl phosphate. Moreover, the modification of thiamin-repressible acid phosphatase of S. cerevisiae with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide resulted in the complete loss of thiamin-binding activity and the Km value of the modified enzyme for thiamin monophosphate increased nearly to the value of the native enzyme for p-nitrophenyl phosphate. These results also indicate that the high affinity of the thiamin-repressible acid phosphatase for thiamin phosphates is due to the thiamin-binding properties of this enzyme.  相似文献   

8.
9.
A new centromere vector for the construction of a Saccharomyces cerevisiae gene library, allowing direct selection for DNA insert, will be described. From that library the gene for the regulatory protein PHO2 involved in PHO5 induction has been cloned by complementation of a pho2 mutation. The complementing activity was shown to be located on a 3.6 kb HindIII fragment. This fragment was used to evict the genomic copy and with appropriate genetic crosses we proved, that the cloned gene is PHO2. The DNA sequence of PHO2 was determined. Analysis of the sequence data uncovered striking homology regions with PHO4, another protein necessary for the induction of PHO5. The relevance of the observed homology will be discussed.  相似文献   

10.
11.
The yeast cell division cycle gene CDC6 was isolated by complementation of a temperature-sensitive cdc6 mutant with a genomic library. The amino acid sequence of the 48 kDalton CDC6 gene product, as deduced from DNA sequence data, includes the three consensus peptide motifs involved in guanine nucleotide binding and GTPase activity, a target site for cAMP-dependent protein kinase and a carboxy-terminal domain related to metallothionein sequences. A plasmid-encoded CDC6-beta-galactosidase hybrid protein was located at the plasma membrane by indirect immunofluorescence. Disruption experiments indicate that the CDC6 gene product is essential for mitotic growth.  相似文献   

12.
13.
Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2       下载免费PDF全文
The PHO81 gene product is a positive regulatory factor required for the synthesis of the phosphate repressible acid phosphatase (encoded by the PHO5 gene) in Saccharomyces cerevisiae. Genetic analysis has suggested that PHO81 may be the signal acceptor molecule; however, the biochemical function of the PHO81 gene product is not known. We have cloned the PHO81 gene and sequenced the promoter. A PHO81-LacZ fusion was shown to be a valid reporter since its expression is regulated by the level of inorganic phosphate and is controlled by the same regulatory factors that regulate PHO5 expression. To elucidate the mechanism by which PHO81 functions, we have isolated and cloned dominant mutations in the PHO81 gene which confer constitutive synthesis of acid phosphatase. We have demonstrated that overexpression of the negative regulatory factor, PHO80, but not the negative regulatory factor PHO85, partially blocks the constitutive acid phosphatase synthesis in a strain containing a dominant constitutive allele of PHO81. This suggests that PHO81 may function by interacting with PHO80 or that these molecules compete for the same target.  相似文献   

14.
In yeast, the repression of acid phosphatase under high phosphate growth conditions requires the trans-acting factor PHO80. We have determined the DNA sequence of the PHO80 gene and found that it encodes a protein of 293 amino acids. The expression of the PHO80 gene, as measured by Northern analysis and level of a PHO80-LacZ fusion protein is independent of the level of phosphate in the growth medium. Disruption of the PHO80 gene is a non-lethal event and causes a derepressed phenotype, with acid phosphatase levels which are 3-4 fold higher than the level found in derepressed wild type cells. Furthermore, over-expression of the PHO80 gene causes a reduction in the level of acid phosphatase produced under derepressed growth conditions. Finally, we have cloned, localized and sequenced a temperature-sensitive allele of PHO80 and found the phenotype to be due to T to C transition causing a substitution of a Ser for a Leu at amino acid 163 in the protein product.  相似文献   

15.
16.
17.
In Saccharomyces cerevisiae, many amino acid biosynthetic pathways are coregulated by a complex general control system: starvation for a single amino acid results in the derepression of amino acid biosynthetic genes in multiple pathways. Derepression of these genes is mediated by positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the isolation and characterization of a previously unreported negative regulatory gene, GCD3. A gcd3 mutation is recessive to wild type, confers resistance to multiple amino acid analogs, and results in overproduction and partially constitutive elevation of mRNA levels for amino acid biosynthetic genes. Furthermore, a gcd3 mutation can overcome the derepression-deficient phenotype of mutations in the positive regulatory GCN1, GCN2, and GCN3 genes. However, the gcd3 mutation cannot overcome the derepression-deficient phenotype of a gcn4 mutation, suggesting that GCD3 acts as a negative regulator of the important GCN4 gene. Northern blot analysis confirmed this conclusion, in that the steady-state levels of GCN4 mRNA are greatly increased in a gcd3 mutant. Thus, the negative regulatory gene GCD3 plays a central role in derepression of amino acid biosynthetic genes.  相似文献   

18.
19.
20.
The DNA segments containing the ADR1 gene and a mutant allele, ADR1-5c, have been isolated by complementation of function in Saccharomyces cerevisiae. The ADR1 gene is required for synthesis of the glucose-repressible alcohol dehydrogenase (ADHII) when S. cerevisiae cells are grown on a nonfermentable carbon source, whereas the ADR1-5c allele allows ADHII synthesis even during glucose repression. A plasmid pool consisting of yeast DNA fragments isolated from a strain carrying the ADR1-5c allele was used to transform a strain containing the adr1-1 allele, which prevents ADHII depression. Transformants were isolated which expressed ADHII during glucose repression. A plasmid isolated from one of these transformants was shown to carry the ADR1-5c allele by its ability to integrate at the chromosomal adr1-1 locus. The wild-type ADR1 gene was isolated by colony hybridization, using the cloned ADR1-5c gene as a probe. The ADR1-5c and ADR1 DNA segments were indistinguishable by restriction site mapping. A partial ADR1 phenotype could be conferred by a 1.9-kilobase region, but DNA outside of this region appeared to be necessary for normal activation of ADHII by the ADR1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号