首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mRNA of the nuclear coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) increases during prolonged exercise and is influenced by carbohydrate availability. It is unknown if the increases in mRNA reflect the PGC-1alpha protein or if glycogen stores are an important regulator. Seven male subjects [23 +/- 1.3 yr old, maximum oxygen uptake (Vo(2 max)) 48.4 +/- 0.8 ml.kg(-1).min(-1)] exercised to exhaustion ( approximately 2 h) at 65% Vo(2 max) followed by ingestion of either a high-carbohydrate (HC) or low-carbohydrate (LC) diet (7 or 2.9 g.kg(-1).day(-1), respectively) for 52 h of recovery. Glycogen remained depressed in LC (P < 0.05) while returning to resting levels by 24 h in HC. PGC-1alpha mRNA increased both at exhaustion (3-fold) and 2 h later (6.2-fold) (P < 0.05) but returned to rest levels by 24 h. PGC-1alpha protein increased (P < 0.05) 23% at exhaustion and remained elevated for at least 24 h (P < 0.05). While there was no direct treatment effect (HC vs. LC) for PGC-1alpha mRNA or protein, there was a linear relationship between the changes in glycogen and those in PGC-1alpha protein during exercise and recovery (r = -0.68, P < 0.05). In contrast, PGC-1beta did not increase with exercise but rather decreased (P < 0.05) below rest level at 24 and 52 h, and the decrease was greater (P < 0.05) in LC. PGC-1alpha protein content increased in prolonged exercise and remained upregulated for 24 h, but this could not have been predicted by the changes in mRNA. The beta-isoform declined rather than increasing, and this was greater when glycogen was not resynthesized to rest levels.  相似文献   

3.
4.
5.
Recent research suggests that LKB1 is the major AMP-activated protein kinase kinase (AMPKK). Peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) is a master coordinator of mitochondrial biogenesis. Previously we reported that skeletal muscle LKB1 protein increases with endurance training. The purpose of this study was to determine whether training-induced increases in skeletal muscle LKB1 and PGC-1alpha protein exhibit a time course and intensity-dependent response similar to that of citrate synthase. Male Sprague-Dawley rats completed endurance- and interval-training protocols. For endurance training, rats trained for 4, 11, 25, or 53 days. Interval-training rats trained identically to endurance-trained rats, except that after 25 days interval training was combined with endurance training. Time course data were collected from endurance-trained red quadriceps (RQ) after each time point. Interval training data were collected from soleus, RQ, and white quadriceps (WQ) muscle after 53 days only. Mouse protein 25 (MO25) and PGC-1alpha protein increased significantly after 4 days. Increased citrate synthase activity, increased LKB1 protein, and decreased AMPKK activity were found after 11 days. Maximal increases occurred after 4 days for hexokinase II, 25 days for MO25, and 53 days for citrate synthase, LKB1, and PGC-1alpha. In WQ, but not RQ or soleus, interval training had an additive effect to endurance training and induced significant increases in all proteins measured. These results demonstrate that LKB1 and PGC-1alpha protein abundances increase with endurance and interval training similarly to citrate synthase. The increase in LKB1 and PGC-1alpha with endurance and interval training may function to maintain the training-induced increases in mitochondrial mass.  相似文献   

6.
AMP-activated protein kinase (AMPK), which was activated by an antihyperglycemic drug metformin, has been hypothesized to mediate metabolic adaptations. The purposes of the present study were 1) to confirm whether acute metformin administration induced AMPK phosphorylation and 2) to determine whether chronic metformin treatment increased the peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein expression, glycolytic and oxidative enzyme activities, and cytochrome c and glucose transporter-4 (GLUT4) protein expressions in the rat soleus and red and white gastrocnemius muscles. The single oral administration of metformin (300 mg/kg body wt) enhanced the AMPK phosphorylation at 5 and/or 6 h after treatment. In the chronic study, rats were fed either normal chow or chow containing 1% metformin for 14 days. Metformin treatment resulted in a mean daily metformin intake of 631 mg.kg body wt(-1).day(-1). Metformin increased the PGC-1alpha content in all three muscles. Metformin increased the hexokinase activity in the white gastrocnemius, the citrate synthase activity in all three muscles, and the beta-hydroxyacyl-CoA dehydrogenase activity in the soleus. The cytochrome c protein content in the soleus muscle also increased. The GLUT4 content was unchanged by metformin. These results suggest that metformin enhances the PGC-1alpha expression and mitochondrial biogenesis possibly at least in part via AMPK phosphorylation in the skeletal muscle. Metformin has thus been proposed to possibly ameliorate insulin resistance, at least partially, by means of such metabolic effects.  相似文献   

7.
8.
The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, mitochondrial biogenesis, and mitochondrial bioenergetics. The insulin-sensitizing thiazolidinedione pioglitazone restores these perturbations in parallel with induction of the mitochondrial biogenesis regulator PGC-1alpha. Overexpression of PGC-1alpha rescues insulin signaling and mitochondrial bioenergetics, and its silencing concordantly disrupts insulin signaling and mitochondrial bioenergetics. In primary skeletal myoblasts pioglitazone also up-regulates PGC-1alpha expression and restores the insulin-resistant mitochondrial bioenergetic profile. In parallel, pioglitazone up-regulates PGC-1alpha in db/db mouse skeletal muscle. Interestingly, the small interfering RNA knockdown of the insulin receptor in C2C12 myotubes down-regulates PGC-1alpha and attenuates mitochondrial bioenergetics. Concordantly, mitochondrial bioenergetics are blunted in insulin receptor knock-out mouse-derived skeletal myoblasts. Taken together these data demonstrate that elevated glucose and insulin impairs and pioglitazone restores skeletal myotube insulin signaling, mitochondrial regulation, and bioenergetics. Pioglitazone functions in part via the induction of PGC-1alpha. Moreover, PGC-1alpha is identified as a bidirectional regulatory link integrating insulin-signaling and mitochondrial homeostasis in skeletal muscle.  相似文献   

9.
10.
The aim of the present study was to test the hypothesis that peroxisome proliferator activated receptor-gamma coactivator (PGC) 1alpha is required for exercise-induced adaptive gene responses in skeletal muscle. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice performed a single treadmill-running exercise bout. Soleus and white gastrocnemius (WG) were obtained immediately, 2 h, or 6 h after exercise. Another group of PGC-1alpha KO and WT mice performed 5-wk exercise training. Soleus, WG, and quadriceps were obtained approximately 37 h after the last training session. Resting muscles of the PGC-1alpha KO mice had lower ( approximately 20%) cytochrome c (cyt c), cytochrome oxidase (COX) I, and aminolevulinate synthase (ALAS) 1 mRNA and protein levels than WT, but similar levels of AMP-activated protein kinase (AMPK) alpha1, AMPKalpha2, and hexokinase (HK) II compared with WT mice. A single exercise bout increased phosphorylation of AMPK and acetyl-CoA carboxylase-beta and the level of HKII mRNA similarly in WG of KO and WT. In contrast, cyt c mRNA in soleus was upregulated in WT muscles only. Exercise training increased cyt c, COXI, ALAS1, and HKII mRNA and protein levels equally in WT and KO animals, but cyt c, COXI, and ALAS1 expression remained approximately 20% lower in KO animals. In conclusion, lack of PGC-1alpha reduced resting expression of cyt c, COXI, and ALAS1 and exercise-induced cyt c mRNA expression. However, PGC-1alpha is not mandatory for training-induced increases in ALAS1, COXI, and cyt c expression, showing that factors other than PGC-1alpha can exert these adaptations.  相似文献   

11.
The purpose of this study was to elucidate the mechanisms underlying low-intensity exercise-induced peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein expression in rat skeletal muscles. Rats (5-6 wk old) swam without a load and ran on the treadmill at a speed of 13 m/min, respectively, in two 3-h sessions separated by 45 min of rest. PGC-1alpha content in epitrochlearis muscle (EPI) was increased by 75 and 95%, immediately and 6 h after swimming, respectively, with no increase in PGC-1alpha content in the soleus (SOL). After running, PGC-1alpha content in EPI was unchanged, whereas a 107% increase in PGC-1alpha content was observed in SOL 6 h after running. Furthermore, in EPI and SOL as well as other muscles (triceps, plantaris, red and white gastrocnemius), PGC-1alpha expression was enhanced concomitant with reduced glycogen postexercise, suggesting that expression of PGC-1alpha occurs in skeletal muscle recruited during exercise. PGC-1alpha content in EPI was increased after 18-h in vitro incubation with 0.5 mM 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and 4 mM caffeine. However, AICAR incubation did not affect PGC-1alpha content in the SOL, whereas caffeine incubation increased it. These results suggest that exercise-induced PGC-1alpha expression in skeletal muscle may be mediated by at least two exercise-induced signaling factors: AMPK activation and Ca2+ elevation. The number of factors involved (both AMPK and Ca2+, or Ca2+ only) in exercise-induced PGC-1alpha expression may differ among muscles.  相似文献   

12.
Dillon LM  Rebelo AP  Moraes CT 《IUBMB life》2012,64(3):231-241
Aging is the progressive decline in cellular, tissue, and organ function. This complex process often manifests as loss of muscular strength, cardiovascular function, and cognitive ability. Mitochondrial dysfunction and decreased mitochondrial biogenesis are believed to participate in metabolic abnormalities and loss of organ function, which will eventually contribute to aging and decreased lifespan. In this review, we discuss what is currently known about mitochondrial dysfunction in the aging skeletal muscle and heart. We focused our discussion on the role of PGC-1 coactivators in the regulation of mitochondrial biogenesis and function and possible therapeutic benefits of increased mitochondrial biogenesis in compensating for mitochondrial dysfunction and circumventing aging and aging-related diseases.  相似文献   

13.
14.
15.
Our previous work has shown that in vascular tissues the elastic medial regions express high levels of the gap junctional protein, connexin43, but low levels of desmin, while the muscular medial regions express low levels of connexin43 but high levels of desmin. It is uncertain, however, whether this regional difference at the tissue level extends down to the level of the individual cell, or reflects an averaged relationship of groups of cells of different connexin43 and desmin expression. The present study has addressed this question using cultured porcine aortic smooth muscle cells. Immunoconfocal microscopic analysis of single-labeled cells showed that while smooth muscle alpha-actin, calponin and vimentin were positively labeled in the majority of medial smooth muscle cells both in intact porcine aorta and corresponding cultured cells, desmin and connexin43 labeling was highly heterogeneous. In the cultured cells, 0.3-0.5% of cells were found to be desmin-positive, and quantitative analysis after double labeling for desmin and connexin43 revealed that the desmin-positive cells were smaller, and contained significantly lower numbers and smaller sizes of connexin43 gap-junctional spots than did desmin-negative cells. Our findings demonstrate that an inverse expression pattern of connexin43 and desmin holds true at the level of the individual cell. This suggests a close relationship between intrinsic phenotypic control and the regulation of connexin43 expression in the arterial smooth muscle cell.  相似文献   

16.
Zhang SY  Liu G  Wang DL  Guo XJ  Qian GS 《生理学报》2000,52(6):497-501
本文测定了兔膈肌钙释放单位中骨骼肌型DHPRα1-亚单位和RyRs的mRNA与蛋白表达水平,探讨了兔膈肌钙释放单位的结构组成特征。采用RT-PCR、原位杂交和免疫组织化学技术,分别测定兔膈肌骨骼肌型DHPRα1-亚单位和RyR1、RyR2及RyR3的mRNA与蛋白表达。结果显示,兔膈肌可见较高水平的骨骼肌型α1-亚单位和RyR1mRNA与蛋白表达;较低水平的RyR3 mRNA与蛋白表达。表明兔膈肌  相似文献   

17.
18.
19.
The present study examined the acute effects of metformin on fatty acid (FA) metabolism in oxidative soleus (SOL) and glycolytic epitrochlearis (EPT) rodent muscle. SOL and EPT were incubated for either 30 or 180 min in the absence or presence of 2 mM metformin and with or without insulin (10 mU/ml). Metformin did not alter basal FA metabolism but countered the effects of insulin on FA oxidation and incorporation into triacylglyerol (TAG). Specifically, metformin prevented the insulin-induced suppression of FA oxidation in SOL but did not alter FA incorporation into lipid pools. In contrast, in EPT metformin blunted the incorporation of FA into TAG when insulin was present but did not alter FA oxidation. In SOL, metformin resulted in a 50% increase in AMP-activated protein kinase alpha2 activity and prevented the insulin-induced increase in malonyl-CoA content. In both fiber types, basal and insulin-stimulated glucose oxidation were not significantly altered by metformin. All effects were similar regardless of whether they were measured after 30 or 180 min. Because increased muscle lipid storage and impaired FA oxidation have been associated with insulin resistance in this tissue, the ability of metformin to reverse these abnormalities in muscle FA metabolism may be a part of the mechanism by which metformin improves glucose clearance and insulin sensitivity. The present data also suggest that increased glucose clearance is not due to its enhanced subsequent oxidation. Additional studies are warranted to determine whether chronic metformin treatment has similar effects on muscle FA metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号