首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim To quantify the latitudinal gradient in species richness in the New World Triatominae and to explore the species‐energy and area hypotheses as possible causes. Location The gradient was studied for North and South America, between 43° N and 32° S. Methods A database was constructed containing the geographical distribution of the 118 New World Triatominae species based on data extracted from several published sources. Species richness was recorded as the number of species present within 5° latitudinal bands. We used univariate and multivariate models to analyse the relationship between area within each latitudinal belt, land surface temperature, and potential evapotranspiration as explanatory variables, and species richness. All variables were georeferenced and data were extracted using a GIS. Results Species richness of Triatominae increases significantly from the poles towards the Equator, peaking over the 5°?10 ° S latitudinal band. It increases according to a linear model, both north and south of the Equator, although a quadratic model fits better to southern hemisphere data. Richness correlates with habitable geographical area, when it is analysed through a nonlinear multiple regression factoring out latitude, only in the southern hemisphere. Regarding the species‐energy hypothesis, a multiple regression analysis controlling the effect of latitude shows a significant relationship between temperature and species richness. This effect is more pronounced in the southern hemisphere. Species richness shows a strong longitudinal trend south of the Equator (increasing to the east), but not north of the Equator. This differential pattern is reflected in significant interactions between longitude and both latitude and temperature in models of the species richness of the New World Triatominae. Main conclusions To our knowledge, this is the first time that a latitudinal gradient in species richness has been shown and analysed for obligate haematophagous organisms, and it shows that the species–energy hypothesis can account for this phenomenon. This relationship is stronger in the southern hemisphere.  相似文献   

2.
The Andean mountain range has played an important role in the evolution of South American biota. However, there is little understanding of the patterns of species diversity across latitudinal and altitudinal gradients. In this paper, we examine the diversity of small mammals along the South Central Dry Andes (SCDA) within the framework of two contrasting hypotheses: (a) species richness decreases with increasing elevation and latitude; and (b) species richness peaks at altitudinal midpoints (mid‐domain). We explore the composition of the species pool, the impact of species–area relationships and the Rapoport effect (i.e. size of geographic ranges) along latitudinal and elevational gradients. First, we constructed a database of SCDA small mammals. Then, species richness patterns were analysed through generalized models, and species–area relationships were assessed by log–log regressions; the curvilinear method (c = S/Az) was use to compute richness corrected by area size. Lastly, the Rapoport effect was evaluated using the midpoint method. Our results show: (1) a richness of 67 small mammals along the SCDA, of which 36 are endemic; (2) a hump‐shaped pattern in species richness along elevation and latitudinal gradients; (3) a species–area relationship for both gradients; (4) endemic species corrected by area present a strong and positive relationship with elevation; (5) a Rapoport effect for the latitudinal ranges, but no effect across the elevational gradient; and (6) a major species turnover between 28° and 30° south latitude. This is the first study quantifying the diversity of small mammals encompassing the central Andean region. Overall, our macrogeographic analysis supports the previously postulated role of the Andes in the diversification of small mammals (i.e. in situ cladogenesis) and highlights some basic attributes (i.e. anatomy of geographic ranges; species–area relationships) when considering the consequences of climate change on biodiversity conservation of mountain ecosystems.  相似文献   

3.
Several hypotheses attempt to explain the latitudinal gradient of species diversity, but some basic aspects of the pattern remain insufficiently explored, including the effect of scales and the role of beta diversity. To explore such components of the latitudinal gradient, we tested the hypothesis of covariation, which states that the gradient of species diversity should show the same pattern regardless of the scale of analysis. The hypothesis implies that there should be no gradients of beta diversity, of regional range size within regions, and of the slope of the species-area curve. For the fauna of North American mammals, we found contrasting results for bats and non-volant species. We could reject the hypothesis of covariation for non-volant mammals, for which the number of species increases towards lower latitudes, but at different rates depending on the scale. Also, for this group, beta diversity is higher at lower latitudes, the regional range size within regions is smaller at lower latitudes, and z, the slope of the species-area relationship is higher at lower latitudes. Contrarily bats did not show significant deviations from the predictions of the hypothesis of covariation: at two different scales, species richness shows similar trends of increase at lower latitudes, and no gradient can be demonstrated for beta diversity, for regional range size, or for the slopes of the species-area curve. Our results show that the higher diversity of non-volant mammals in tropical areas of North America is a consequence of the increase in beta diversity and not of higher diversity at smaller scales. In contrast, the diversity of bats at both scales is higher at lower latitudes. These contrasting patterns suggest different causes for the latitudinal gradient of species diversity in the two groups that are ultimately determined by differences in the patterns of geographic distribution of the species.  相似文献   

4.
Aims (i) To describe at the level of local communities latitudinal gradients in the species richness of different families of New World bats and to explore the generality of such gradients. (ii) To characterize the relative effects of changes in the richness of each family to the richness of entire communities. (iii) To determine differences in the rate and direction of latitudinal gradients in species richness within families. (iv) To evaluate how differences among families regarding latitudinal gradients in species richness influence the latitudinal gradient in species richness of entire communities. Location Continental New World ranging from the northern continental United States (Iowa, 42° N) to eastern Paraguay (Canindeyú, 24° S). Methods Data on the species composition of communities came from 32 intensively sampled sites. Analyses focused on species richness of five of nine New World bat families. Multivariate analysis of variance and discriminant function analysis determined and described differences among temperate, subtropical, and tropical climatic zones regarding the species richness of bat families. Simple linear regression described latitudinal gradients in species richness of families. Path analysis was used to describe: (i) the direct effect of latitude on species richness of communities, (ii) the indirect effects of latitude on the species richness of communities through its effect on the species richness of each family, (iii) the relative effects of latitude on the species richness of bat families, and (iv) the relative contribution of each family to variation in the species richness of communities. Results Highly significant differences among climatic zones existed primarily because of a difference between the temperate zone and the tropical and subtropical zones combined. This difference was associated with the high number of vespertilionids in the temperate zone and the high number of phyllostomids in the tropical and subtropical zones. Latitudinal gradients in species richness were contingent on phylogeny. Although only three of the five families exhibited significant gradients, all families except for the Vespertilionidae exhibited indistinguishable increases in species richness with decreases in latitude. The Emballonuridae, Phyllostomidae and Vespertilionidae exhibited significant latitudinal gradients whereby the former two families exhibited the classical increase in species richness with decreasing latitude and the latter family exhibited the opposite pattern. Variation in species richness of all families contributed significantly to variation in the species richness of entire communities. Nonetheless, the Phyllostomidae made a significantly stronger contribution to changes in species richness of communities than did all other families. Much of the latitudinal gradient in species richness of communities could be accounted for by the effects of latitude on the species richness of constituent families. Main conclusions Ecological and evolutionary differences among higher taxonomic units, particularly those differences involving life‐history traits, predispose taxa to exhibit different patterns of diversity along environmental gradients. This may be particularly true along extensive gradients such as latitude. Nonetheless, species rich taxa, by virtue of their greater absolute rates of change, can dominate and therefore define the pattern of diversity at a higher taxonomic level and eclipse differences among less represented taxa in their response to environmental gradients. This is true not only with respect to how bats drive the latitudinal gradient in species richness for all mammals, but also for how the Phyllostomidae drives the latitudinal gradient for all bats in the New World. Better understanding of the mechanistic basis of latitudinal gradients of diversity may come from comparing and contrasting patterns across lower taxonomic levels of a higher taxon and by identifying key ecological and evolutionary traits that are associated with such differences.  相似文献   

5.
Aim Local‐regional (LR) species diversity plots were conceived to assess the contribution of regional and local processes in shaping the patterns of biological diversity, but have been used also to explore the scaling of diversity in terms of its alpha, beta, and gamma components. Here we explore the idea that patterns in the geographical ranges of species over a continent can determine the shape of small region to large region (SRLR) plots, which are equivalent to LR plots when comparing the diversity of sites at two regional scales. Location To test that idea, we analysed the diversity patterns at two regional scales for the mammals of North America, defined as the mainland from Alaska and Canada to Panama. Method We developed a theoretical model relating average range size of species over a large‐scale region with its average regional point species diversity (RPD). Then, we generated a null model of expected SRLR plots based on theoretical predictions. Species diversities at two scales were modelled using linear and saturation functions for Type I and Type II SRLR relationships, respectively. We applied the models to the case of North American mammals by examining the regional diversity and the RPD for 21 large‐scale quadrats (with area equal to 160,000 km2), arranged along a latitudinal gradient. Results Our model showed that continental and large‐scale regional patterns of distribution of species can generate both types of SRLR relationship, and that these patterns can be reflected in LR plots without invoking any kind of local processes. We found that North American nonvolant mammals follow a Type I SRLR relationship, whereas bats follow a Type II pattern. This difference was linked to patterns in which species of the two mammalian groups distribute in geographical space. Conclusion Traditional LR plots and the new SRLR plots are useful tools in exploring the scaling of species diversity and in showing the relationship between distribution and diversity. Their usefulness in comparing the relative role of local and regional processes is, however, very limited.  相似文献   

6.
Aim Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location North America north of Mexico. Methods The study area was divided into 313 equal‐area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (lnJ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of lnJ in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in lnJ into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of lnJ in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in lnJ than distance, climate or topography does separately. Main conclusions The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template.  相似文献   

7.
Aim To assess the relationship between species richness and distribution within regions arranged along a latitudinal gradient we use the North American mammalian fauna as a study case for testing theoretical models. Location North America. Methods We propose a conceptual framework based on a fully stochastic mid‐domain model to explore geographical patterns of range size and species richness that emerge when the size and position of species ranges along a one‐dimensional latitudinal gradient are randomly generated. We also analyse patterns for the mammal fauna of North America by comparing empirical results from a biogeographical data base with predictions based on randomization null models. Results We confirmed the validity of Rapoport's rule for the mammals of North America by documenting gradients in the size of the continental ranges of species. Additionally, we demonstrated gradients of mean regional range size that parallel those of continental range. Our data also demonstrated that mean range size, measured both as a continental or a regional variable, is significantly correlated with the geographical pattern in species richness. All these patterns deviated sharply from null models. Main conclusions Rapoport's statement of an areographic relationship between species distribution and richness is highly relevant in modern discussions about ecological patterns at the geographical scale.  相似文献   

8.
Aim To evaluate the relationship of climate and physiography to species density and ecological diversity of North American mammals. Location North America, including Mexico and Central America. Methods Species density, size structure and trophic structure of mammalian faunas and nine environmental variables were documented for quadrats covering the entire continent. Spatial autocorrelation of species density and the environmental variables illustrated differences in their spatial structure at the continental scale. We used principal component analysis to reduce the dimensionality of the climatic variables, linear multiple regression to determine which environmental variables best predict species density for the continent and several regions of the continent, and canonical ordination to evaluate how well the environmental variables predict ecological structure of mammalian faunas over North America. Results In the best regression model, five environmental variables, representing seasonal extremes of temperature, annual energy and moisture, and elevation, predicted 88% of the variation in species density for the whole continent. Among different regions of North America, the environmental variables that predicted species density vary. Changes in the size and trophic structure of mammalian faunas accompany changes in species density. Redundancy analysis demonstrated that environmental variables representing winter temperature, frostfree period, potential and actual evapotranspiration, and elevation account for 77% of the variation in ecological structure. Main conclusions The latitudinal gradient in mammalian species density is strong, but most of it is explained by variation in the environmental variables. Each ecological category peaks in species richness under particular environmental conditions. The changes of greatest magnitude involve the smallest size categories (< 10 g, 11–100 g), aerial insectivores and frugivores. Species in these categories, mostly bats, increase along a gradient of decreasing winter temperature and increasing annual moisture and frostfree period, trends correlated with latitude. At the opposite end of this gradient, species in the largest size category (101–1000 kg) increase in frequency. Species in size categories 3 (101–1000 g), 5 (11–100 kg) and 6 (101–1000 kg), herbivores, and granivores increase along a longitudinal gradient of increasing annual potential evapotranspiration and elevation. Much of the spatial pattern is consistent with ecological sorting of species ranges along environmental gradients, but differential rates of speciation and extinction also may have shaped the ecological diversity of extant North American mammals.  相似文献   

9.
The species-area relationship (SAR), describing the increase in species richness with increasing area, and the latitudinal diversity gradient (LDG), describing the decrease in species richness with increasing latitude, are the oldest and most robust patterns in biogeography, yet connections between them remain poorly understood. Here, using 1,742 floras covering the entirety of North America north of Mexico (NAM) and including all of NAM's native species of vascular plants, we show that the slope of the SAR consistently decreases with increasing latitude. This trend is general and holds for subsets of the floras in eastern and western NAM. The southernmost latitudinal quarter of NAM exhibits SARs more than twice as steep as those of the northernmost quarter for both eastern and western regions. This decrease in SAR slope with increasing latitude is consistent with the environmental texture hypothesis and Rapoport's rule, and it suggests that more detailed studies of species endemism in relation to environmental and historical factors will yield significant insights into the underlying causes of SAR and LDG patterns.  相似文献   

10.
The latitudinal gradient of species richness has frequently been attributed to higher diversification rates of tropical groups. In order to test this hypothesis for mammals, we used a set of 232 genera taken from a mammalian supertree and, additionally, we reconstructed dated Bayesian phylogenetic trees of 100 genera. For each genus, diversification rate was estimated taking incomplete species sampling into account and latitude was assigned considering the heterogeneity in species distribution ranges. For both datasets, we found that the average diversification rate was similar among all latitudinal bands. Furthermore, when we used phylogenetically independent contrasts, we did not find any significant correlation between latitude and diversification parameters, including different estimates of speciation and extinction rates. Thus, other factors, such as the dynamics of dispersal through time, may be required to explain the latitudinal gradient of diversity in mammals.  相似文献   

11.
Among the most prominent, large‐scale patterns of species richness are the increases in richness with decreasing latitude and with increasing habitat heterogeneity. Using the stream‐dwelling larval and pupal stages of North American black flies (Diptera: Simuliidae), we address 3 broad questions about species richness: (i) Does a significant latitude–richness relationship exist? (ii) How does habitat heterogeneity influence gamma diversity? (iii) What is the sign (positive or negative) of the latitude–richness and the heterogeneity–richness relationships? We found no evidence that habitat heterogeneity influences gamma diversity. The estimated peak species richness for black flies in North America was at 50–53°N, which also corresponds with peak generic richness. All plesiomorphic, extant lineages of the Simuliidae in the Western Hemisphere are found in cool mountainous environments of North America, suggesting that peak richness at 50–53°N might be a signature of this phylogenetic pattern and a reflection of underlying historical processes.  相似文献   

12.
The present study is the first attempt to describe meso-scale patterns in the species richness of polychaetes along the Gulf of California, which stretches from about 23°N to 31°N. We examine herein the spatial changes in species distribution and explore the overlapping of species’ ranges towards the centre of the Gulf, to test whether the mid-domain effect (MDE) could explain an expected mid-domain peak in species richness. The faunal composition and the latitudinal range of 244 species of polychaetes recorded along the continental shelf of the Gulf of California were analysed in latitude bands of 1°. The species composition changes around the Gulf’s archipelago (~29°N), and the highest values of species richness are found at the 25° (197 species) and 26° (193 species) of latitude. Although the species richness pattern could be described by a parabolic shape, the regional trend was not strongly consistent with the peak of diversity at 27°N (176–191 species) predicted by the mid-domain effect: the random sorting of species’ ranges within spatial domain does not explain satisfactorily the geographical patterns of diversity. Nevertheless, a partial contribution of MDE to these natural patterns of diversity could be detected, and the increase in species richness towards middle latitudes was basically determined by species with distribution ranges larger than 6°. The low level of significance between the empirical species richness pattern and the mid-domain model prediction for polychaetes in the Gulf does not restrict their use as a model for exploring the randomness of the diversity patterns.  相似文献   

13.
QIAN  HONG 《Annals of botany》1999,83(3):271-283
This paper reports: (1) patterns of taxonomic richness of vascularplants in North America (north of Mexico), an area accountingfor 16.6% of the total world land, in relation to latitudinaland longitudinal gradients; (2) floristic relationships betweendifferent latitudinal zones, longitudinal zones, and geographicregions of North America; and (3) floristic relationships betweenNorth America and Eurasia at various geographic scales. NorthAmerica was geographically divided into twelve regions, whichwere latitudinally grouped into four zones, each with threeregions, and longitudinally grouped into three zones, each withfour regions. The native vascular flora of North America consistsof 162 orders, 280 families, 1904 genera and 15352 species.Along the latitudinal gradient, species richness shows a strikingincrease with decreasing latitude (e.g. the northernmost latitudinalzone has only 11.7% of the number of species in the southernmostlatitudinal zone). However, about 63% of the species of thenorthernmost latitudinal zone are also present in the southernmostlatitudinal zone of North America. Among the three longitudinalzones, the zone on the Pacific coast has 1.48 and 1.64-timesas many species as the zones in the interior and on the Atlanticcoast, respectively. About 36% of the species in the zone ofthe Atlantic coast also occur in the Pacific coast zone. However,each of over 40% of the species in North America occupies lessthan 10% of the total land area of North America. Some 48% ofthe genera and 6.5% of the species of North America are alsonative to Eurasia. In general, the number of genera common toNorth America and Eurasia increased from the north to the southand from the west to the east of North America, whereas thenumber of species common to the two continents decreased alongthe same two geographic gradients.Copyright 1999 Annals of BotanyCompany Asia, biodiversity, Europe, floristic similarity, latitudinal and longitudinal gradients, North America, taxonomic richness.  相似文献   

14.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

15.
Kaspari M  Ward PS  Yuan M 《Oecologia》2004,140(3):407-413
Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models—energy-speciation, energy-abundance, and area—that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals—South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.  相似文献   

16.

Aim

Understanding the determinants of species distribution and richness is key to explaining global ecological patterns. We examined the current knowledge about terrestrial mammals in tidal marshes and evaluated whether species richness increased with the marsh surface area and/or with their proximity to the equator and whether species distribution ranges decreased with latitude.

Location

Global.

Methods

We reviewed the existing literature on terrestrial mammals in tidal marshes. We examined their ecological characteristics (e.g. habitat specialists, native or alien), predicted their variation in species richness and range size along latitude, and explored factors, such as surface area, underlying the global patterns found.

Results

We found 962 records, describing 125 mammalian species using tidal marshes worldwide, also including several alien species. Most species (95%) were not marsh specialized, and some (18%) were of conservation concern. There were information gaps in South America, Africa, Australia and Asia, and a lack of information about mammalian ecological roles worldwide. We found that species richness increased with surface area, and showed a bimodal pattern peaked between 40° and 50° latitude in each hemisphere. We found no relationship between latitude and species range size.

Main conclusions

Our worldwide findings revealed a broader range of tidal marshes inhabited by terrestrial mammals, and higher values of species richness than previously reported. The bimodal pattern of species richness was consistent with the species–area hypothesis, but it also suggested that further studies of species distribution in relation to historical and environmental factors will yield significant insights about variables driving richness in tidal marshes. Despite terrestrial mammal ubiquitous distribution in these ecosystems, there are considerable geographic gaps as regards knowledge about their functional importance and the impact of alien species on tidal marsh functioning. Consequently, extending our research efforts is key to planning the conservation of these coastal ecosystems.  相似文献   

17.
Beta多样性度量不同时空尺度物种组成的变化,是生物多样性的重要组成部分;理解其地理格局和形成机制已成为当前生物多样性研究的热点问题。基于Alwyn H. Gentry在美洲收集的131个森林样方数据,采用倍性和加性分配方法度量群落beta多样性,检验beta多样性随纬度的变化趋势,并分析其形成机制。研究表明:(1) 美洲森林群落beta多样性随纬度增加显著下降,热带和亚热带地区beta多样性高于温带地区;此格局可由物种分布范围的纬度梯度性和不同粒度(grain)下物种丰富度与纬度回归斜率的差异推论得出;(2) 加性分配方法表明beta多样性对各个温度带森林群落gamma多样性的相对贡献率平均为78.2%,并且随纬度升高而降低;(3) 美洲南半球森林群落beta多样性高于其北半球,这可能反映了区域间物种进化和环境变迁历史的差异。此外,还探讨了不同beta多样性计算方法的适用情景,首次证实了森林生态系统群落水平beta多样性的纬度梯度性,这对研究生物多样性的形成机制和生物多样性保护都具有重要的意义。  相似文献   

18.
The geographic area hypothesis advances area as the primary cause of latitudinal gradients in diversity. The greater area of tropical zones, it suggests, stimulates speciation, inhibits extinction, and leads to increased species richness compared to the situation in smaller temperate and boreal zones. Because bats exhibit exceptionally strong latitudinal gradients of richness at multiple spatial scales in the New World, they are an appropriate system with which to test the geographic area hypothesis. We used range maps for 250 species of New World bats to estimate species richness in biogeographic zones at two hierarchical spatial scales: biome types and provinces. We then conducted a series of regression analyses to evaluate the ability of area to account for latitudinal gradients in species richness. However, spillover (zonal bleeding) of tropical species into extra-tropical zones may mask the species-area relationship and alter perceptions of the latitudinal gradient. To address this issue, we conducted additional analyses excluding tropical species, using a series of increasingly inclusive definitions of tropical ranges. Ecogeographic zones of the New World are not larger at tropical versus extra-tropical latitudes. Moreover, spillover of tropical species into ecogeographic zones within extra-tropical regions generally does not diminish the association between richness and area. Nonetheless, the latitudinal gradient of species richness is strong and significant at both ecogeographic scales. Clearly, area does not drive the latitudinal gradient of bat species richness in the New World. In fact, area represents a source of noise rather than a dominant signal at the focal scale of biome types and provinces in the Western Hemisphere.  相似文献   

19.
The latitudinal diversity gradient (LDG) has been known for over a century, but its origin remains poorly understood. Because both latitude and species richness are broadly related to temperature, environmental temperature has been proposed as a driver of the LDG. Recently, Wang et al. (2009, Proceedings of the National Academy of Sciences USA, 106 ,13388–13392) used datasets compiled from tree distributions in eastern Asia and North America to compare the species richness?temperature relationship between the two regions at several spatial scales and framed their analyses in the context of the metabolic theory of ecology. Here, we show that their datasets lack comparability between eastern Asia and North America and that some aspects of their analyses probably biased their results, casting doubt on some of their conclusions.  相似文献   

20.
The distribution of diversity along latitudinal and elevation gradients, and the coupling of this phenomenon with climate, is a pattern long recognized in ecology. Hypothesizing that climate change may have altered this pattern over time, we investigated whether the aggregate of reported northward shifts of bird ranges in North America is now detectable in community‐level indices such as richness and diversity. Here, we report that bird diversity in North America increased and shifted northward between 1966 and 2010. This change in the relationship of diversity to the latitudinal gradient is primarily influenced by range expansions of species that winter in the eastern United States as opposed to species which migrate to this area from wintering grounds in the tropics. This increase in diversity and its northward expansion is best explained by an increase in regional prebreeding season temperature over the past 44 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号