首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smut is a major disease of sugarcane caused by Ustilago scitaminea. Germination of fungal teliospores is achieved on the internode surface of plants, and it is followed by the formation of appressoria. A primary response of sugarcane plants to the infection seems to be the production of several glycoproteins, defined as mid-molecular mass (MMMG) or high molecular mass (HMMG) macromolecules. Teliospore germination in the presence of both MMMG and HMMG decreased about 50% following 5 h of teliospore contact with glycoproteins. This may be related to the ability of glycoproteins to produce cytoagglutination. Binding of fluorescein-labelled glycoproteins was studied by fluorescence microscopy, showing that staining of cells was not uniform, but mainly in the contact zone between two individual teliospores when aggregated. HMMG was composed of only one fraction that was completely retained by smut teliospores, whereas three of the five different glycoproteins occurring in the MMMG fraction were retained by teliospore cell walls. Moreover, a unique application of salicylic acid, naturally produced by sugarcane stalks after experimental fungal infection, enhanced the production of both glycoprotein pools. A hypothesis about the role of both HMMG and MMMG as defence glycoproteins is discussed.  相似文献   

2.
Abstract

Inoculation of sugarcane plants, cv. Jaronu 60-5, with teliospores of Ustilago scitaminea increased the production of sugarcane glycoproteins of high molecular mass (HMMG) and decreased the amount of those of mid-molecular mass (MMMG) recovered from stalks cell-free extracts. Whereas sugarcane glycoprotein of healthy plants totally inhibited the production of fungal mycelium from teliospores, mycelium growth was slightly affected by MMMG, and drastically diminished by HMMG obtained from inoculated plants. The adhesion of sugarcane glycoproteins to fungal teliospores produced cell aggregation. This effect was clearly reduced by incubating teliospores in buffer containing HMMG or MMMG previously digested with invertase. Sugarcane arginase associated to MMMG was retained by teliospores, whereas the enzymatic activity associated to HMMG from inoculated plants increased. Chitinase was not significantly retained by teliospores. Only HMMG and MMMG obtained from healthy plants were able to inhibit cell polarity in some extent. Smut induced changes in the composition of HMMG and MMMG. Some of these new glycoproteins are able to inhibit cell polarity. Since receptors, isolated from the cell wall of smut teliospores, were eluted from activated agarose beads by N-acetyl-D-glucosamine, we concluded that the peptide fraction of HMMG and MMMG bind to this amino sugar in the polysaccharide moiety of smut ligands.  相似文献   

3.
The ability of the nitrogen-fixing bacterial endophyte Acetobacter diazotrophicus strain PAl5 to enhance the growth of sugarcane SP70-1143 was evaluated in the growth chamber, greenhouse, and field by comparing plants inoculated with wild-type and Nif mutant MAd3A in two independent experiments. The wild-type and Nif mutant strains colonized sugarcane plants equally and persisted in mature plants. In N-deficient conditions, sugarcane plants inoculated with A. diazotrophicus PAl5 generally grew better and had a higher total N content 60 days after planting than did plants inoculated with mutant MAd3A or uninoculated plants. These results indicate that the transfer of fixed N from A. diazotrophicus to sugarcane might be a significant mechanism for plant growth promotion in this association. When N was not limiting, growth enhancement was observed in plants inoculated with either wild-type or Nif- mutants, suggesting the additional effect of a plant growth promoting factor provided by A. diazotrophicus. A 15N2 incorporation experiment demonstrated that A. diazotrophicus wild-type strains actively fixed N2 inside sugarcane plants, whereas the Nif- mutants did not.  相似文献   

4.
Abstract

Two families of sugarcane glycoproteins differing in their molecular mass have been isolated from sugarcane stalks. These glycoproteins specifically bind to cell wall receptors of Xanthomonas albilineans, a sugarcane pathogen, producing bacterial agglutination. Bound glycoproteins can be desorbed from bacterial cell walls by galactitol, a component of the glycosidic moiety of the sugarcane protein. This indicates that sugarcane glycoproteins bind through their glycosidic rest to the peptide moiety of the bacterial receptor. Several cell wall receptors have been isolated by affinity chromatography and separated by capillary electrophoresis.  相似文献   

5.
6.
Gluconacetobacter diazotrophicus is an endophyte of sugarcane frequently found in plants grown in agricultural areas where nitrogen fertilizer input is low. Recent results from this laboratory, using mutant strains of G. diazotrophicus unable to fix nitrogen, suggested that there are two beneficial effects of G. diazotrophicus on sugarcane growth: one dependent and one not dependent on nitrogen fixation. A plant growth-promoting substance, such as indole-3-acetic acid (IAA), known to be produced by G. diazotrophicus, could be a nitrogen fixation-independent factor. One strain, MAd10, isolated by screening a library of Tn5 mutants, released only approximately 6% of the amount of IAA excreted by the parent strain in liquid culture. The mutation causing the IAA(-) phenotype was not linked to Tn5. A pLAFR3 cosmid clone that complemented the IAA deficiency was isolated. Sequence analysis of a complementing subclone indicated the presence of genes involved in cytochrome c biogenesis (ccm, for cytochrome c maturation). The G. diazotrophicus ccm operon was sequenced; the individual ccm gene products were 37 to 52% identical to ccm gene products of Escherichia coli and equivalent cyc genes of Bradyrhizobium japonicum. Although several ccm mutant phenotypes have been described in the literature, there are no reports of ccm gene products being involved in IAA production. Spectral analysis, heme-associated peroxidase activities, and respiratory activities of the cell membranes revealed that the ccm genes of G. diazotrophicus are involved in cytochrome c biogenesis.  相似文献   

7.
Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus-sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by (15)N metabolic labeling of bacteria, root samples, and co-cultures. Overall, more than 400 proteins were analyzed and 78 were differentially expressed between the plant-bacterium interaction model and control cultures. A comparative analysis of the G. diazotrophicus in interaction with two distinct genotypes of sugarcane, SP70-1143 and Chunee, revealed proteins with fundamental roles in cellular recognition. G. diazotrophicus presented proteins involved in adaptation to atypical conditions and signaling systems during the interaction with both genotypes. However, SP70-1143 and Chunee, sugarcane genotypes with high and low contribution of biological nitrogen fixation, showed divergent responses in contact with G. diazotrophicus. The SP70-1143 genotype overexpressed proteins from signaling cascades and one from a lipid metabolism pathway, whereas Chunee differentially synthesized proteins involved in chromatin remodeling and protein degradation pathways. In addition, we have identified 30 bacterial proteins in the roots of the plant samples; from those, nine were specifically induced by plant signals. This is the first quantitative proteomic analysis of a bacterium-plant interaction, which generated insights into early signaling of the G. diazotrophicus-sugarcane interaction.  相似文献   

8.
AIMS: To isolate and identify endophytic nitrogen-fixing bacteria in sugarcane growing in Cuba without chemical fertilizers. METHODS AND RESULTS: Two N2-fixing isolates, 9C and T2, were obtained from surface-sterilized stems and roots, respectively, of sugarcane variety ML3-18. Both isolates showed acetylene reduction and H2 production in nitrogen-free media. Nitrogenase activity measured by H2 production was about 15 times higher for isolate 9C than for T2 or for Gluconoacetobacter diazotrophicus (PAL-5 standard strain, ATCC 49037). The nifH gene segment was amplified from both isolates using specific primers. Classification of both T2 and 9C was made on the basis of morphological, biochemical, PCR tests and 16S rDNA sequence analysis. CONCLUSIONS: Isolate 9C was identified as a Pantoea species from its 16S rDNA, but showed considerable differences in physiological properties from previously reported species of this genus. For example, 9C can be cultured over a wide range of temperature, pH and salt concentration, and showed high H2 production (up to 67.7 nmol H2 h(-1) 10(10) cell(-1)). Isolate T2 was a strain of Gluconacetobacter diazotrophicus. SIGNIFICANCE AND IMPACT OF THE STUDY: A new N2-fixing endophyte, i.e. Pantoea, able to produce H2 and to grow in a wide range of conditions, was isolated from sugarcane stem tissue and characterized. The strain with these attributes may well be valuable for agriculture.  相似文献   

9.
The intercellular spaces of sugarcane (Saccharum officinarum L.) stem parenchyma are filled with solution (determined by cryoscanning microscopy), which can be removed aseptically by centrifugation. It contained 12% sucrose (Suc; pH 5.5.) and yielded pure cultures of an acid-producing bacterium (approximately 104 bacteria/mL extracted fluid) on N-poor medium containing 10% Suc (pH 5.5). This bacterium was identical with the type culture of Acetobacter diazotrophicus, a recently discovered N2-fixing bacterium specific to sugarcane, with respect to nine biochemical and morphological characteristics, including acetylene reduction in air. Similar bacteria were observed in situ in the intercellular spaces. This demonstrates the presence of an N2-fixing endophyte living in apoplastic fluid of plant tissue and also that the fluid approximates the composition of the endophytes's optimal culture medium. The apoplastic fluid occupied 3% of the stem volume; this approximates 3 tons of fluid/ha of the crop. This endogenous culture broth consisting of substrate and N2-fixing bacteria may be enough volume to account for earlier reports that some cultivars of sugarcane are independent of N fertilizers. It is suggested that genetic manipulation of apoplastic fluid composition may facilitate the establishment of similar symbioses with endophytic bacteria in other crop plants.  相似文献   

10.
Recombinant Gluconacetobacter diazotrophicus containing Cry1Ac gene from Bacillus thuringiensis var. kurstaki borne on pKT230, shuttle vector, was generated. PCR amplification of Cry1Ac gene present in recombinant G. diazotrophicus yielded a 278-bp DNA product. The nitrogenase assay has revealed that the recombinant G. diazotrophicus in sugarcane stem produced similar levels of nitrogenase compared to wild-type G. diazotrophicus. The presence of 130-kDa protein in apoplastic fluid from sugarcane stem harvested from pots inoculated with recombinant G. diazotrophicus shows that the translocated G. diazotrophicus produces 130-kDa protein which is recognized by the hyperimmune antiserum raised against 130-kDa protein. The first instar Eldana saccharina neonate larvae that fed on artificial medium containing recombinant G. diazotrophicus died within 72 h after incubation.  相似文献   

11.
In this study the antagonistic activity among 55 Gluconacetobacter diazotrophicus strains, belonging to 13 electrophoretic types (ETs), in culture media was analyzed. Antagonistic effects were seen only in strains belonging to two ETs named ET-1 and ET-3. Two out of 29 ET-1 strains, and 3 out of 7 ET-3 strains of G. diazotrophicus showed antagonistic effects against many other strains belonging to all the ETs of this species analyzed, and against closely related strains of Gluconacetobacter species, including Gluconacetobacter johannae, Gluconacetobacter azotocaptans and Gluconacetobacter liquefaciens but not against other phylogenetically distant bacterial species. Results showed that the substance responsible of such antagonistic activity is a low molecular mass molecule (approximately 3400 Da), stable from pH 3.5 to 8.5, and very stable at 4 degrees C for 10 months. This substance was sensitive to proteases, and the antagonistic activity was lost after 2 h at 95 degrees C. All of these features show that the substance is related to bacteriocin-like molecules. The antagonistic substance should be chromosomally encoded because ET-3 strains of G. diazotrophicus do not harbor any plasmids. The antagonistic ability of ET-3 strains of G. diazotrophicus could be an advantage for the natural colonization of the sugarcane environment, as was observed in experiments with micropropagated sterile sugarcane plantlets co-inoculated with a bacteriocin-producer strain and a bacteriocin-sensitive strain of G. diazotrophicus. In these experiments, both in the rhizosphere as well as inside the roots, the bacteriocin-sensitive population decreased drastically. In addition, this study shows that inside the plants there may exist antagonistic interactions among endophytic bacteria like to those described among the rhizospheric community.  相似文献   

12.
Gluconacetobacter diazotrophicus is an N(2)-fixing endophyte isolated from sugarcane. G. diazotrophicus was grown on solid medium at atmospheric partial O(2) pressures (pO(2)) of 10, 20, and 30 kPa for 5 to 6 days. Using a flowthrough gas exchange system, nitrogenase activity and respiration rate were then measured at a range of atmospheric pO(2) (5 to 60 kPa). Nitrogenase activity was measured by H(2) evolution in N(2)-O(2) and in Ar-O(2), and respiration rate was measured by CO(2) evolution in N(2)-O(2). To validate the use of H(2) production as an assay for nitrogenase activity, a non-N(2)-fixing (Nif(-)) mutant of G. diazotrophicus was tested and found to have a low rate of uptake hydrogenase (Hup(+)) activity (0.016 +/- 0.009 micromol of H(2) 10(10) cells(-1) h(-1)) when incubated in an atmosphere enriched in H(2). However, Hup(+) activity was not detectable under the normal assay conditions used in our experiments. G. diazotrophicus fixed nitrogen at all atmospheric pO(2) tested. However, when the assay atmospheric pO(2) was below the level at which the colonies had been grown, nitrogenase activity was decreased. Optimal atmospheric pO(2) for nitrogenase activity was 0 to 20 kPa above the pO(2) at which the bacteria had been grown. As atmospheric pO(2) was increased in 10-kPa steps to the highest levels (40 to 60 kPa), nitrogenase activity decreased in a stepwise manner. Despite the decrease in nitrogenase activity as atmospheric pO(2) was increased, respiration rate increased marginally. A large single-step increase in atmospheric pO(2) from 20 to 60 kPa caused a rapid 84% decrease in nitrogenase activity. However, upon returning to 20 kPa of O(2), 80% of nitrogenase activity was recovered within 10 min, indicating a "switch-off/switch-on" O(2) protection mechanism of nitrogenase activity. Our study demonstrates that colonies of G. diazotrophicus can fix N(2) at a wide range of atmospheric pO(2) and can adapt to maintain nitrogenase activity in response to both long-term and short-term changes in atmospheric pO(2).  相似文献   

13.
14.
It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems,and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intraceliularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers,we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus,with minimal or zero inputs.  相似文献   

15.
It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus, with minimal or zero inputs.  相似文献   

16.
Abstract Lipopolysaccharides from six nitrogen-fixing strains of Acetobacter diazotrophicus (PR2, PAL3, PAL5, PR4, PR14, PR20), isolated from sugarcane, were purified by phenol-water extraction and ultracentrifugation. The relatively large molecular mass observed by SDS-PAGE indicated that the lipopolysaccharides of each strain possessed an O-side chain. Analysis of each lipopolysaccharide by colorimetric assays and by gas liquid chromatography/mass spectrometry combination showed that the core and lipid A composition was similar for all strains, containing 3-deoxy-d-manno-2-octulosonic acid, glucosamine and fatty acid (16-0, 3-OH-14, 2-OH-16:0, 3-OH-16:0). The neutral sugar composition showed the predominance of 6-deoxy-hexose (rhamnose and fucose) and ribose, in comparison with hexose (glucose, galactose, mannose). The presence of 6-deoxy-hexose and ribose containing O-side chains is discussed as a way of discriminating A. diazotrophicus from other Acetobacter species.  相似文献   

17.
Colonization of micropropagated sugarcane plants by Gluconacetobacter diazotrophicus and Herbaspirillum sp. was confirmed by a dot-immunoblot assay. In all, a 45-day short-term and 180-day long-term experiments conducted on micropropagated sugarcane plants of Co 86032, a sugar rich popular variety in South India, indicated the usefulness of these diazotrophs as plant growth promoting bacteria. Co-inoculation of these two bacteria enhanced the biomass considerably under N-limited condition in the short duration experiment. In the long-term experiment, the establishment of inoculated Herbaspirillum sp. remained stable with the age of the crop up to 180 days, while there was a reduction in population of G. diazotrophicus for the same period. The total bio-mass and leaf N were higher in plants inoculated with G. diazotrophicus and Herbaspirillum sp. without N fertilization and also in plants with 50% of the recommended N (140 kg ha(-1)) than the plants fertilized with recommended dose of inorganic N (280 kg ha(-1)). This experiment showed that inoculation with these bacteria in sugarcane variety Co 86032 could mitigate fertilizer N application considerably in sugarcane cultivation.  相似文献   

18.
The effects of different carbon and nitrogen sources on the growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus were investigated. The amino acids asparagine, aspartic acid, and glutamic acid affected microbial growth and nitrogenase activity. Several enzymatic activities involved in the tricarboxylic acid cycle were affected by the carbon source used. In addition, glucose and gluconate significantly increased the oxygen consumption (respiration rate) of whole cells of G. diazotrophicus grown under aerobic conditions. Enzymes responsible for direct oxidation of glucose and gluconate were especially active in cells grown with sucrose and gluconate. The presence of amino acids in the apoplastic and symplastic sap of sugarcane stems suggests that these compounds might be of importance in the regulation of growth and nitrogenase activity during the symbiotic association. The information obtained from the plant-bacterium association together with the results of other biochemical studies could contribute to the development of biotechnological applications of G. diazotrophicus.  相似文献   

19.
The relatively low numbers and sporadic pattern of incidence of the acetic acid bacterium Gluconacetobacter sacchari with the pink sugarcane mealybug (PSMB) Saccharicoccus sacchariCockerell (Homoptera: Pseudococcidae) over time and from different sugarcane-growing regions do not indicate that Glac. sacchari is a significant commensal of the PSMB, as has been previously proposed. This study was conducted to investigate the hypothesis that Glac. sacchari is, like its closest relative Glac. diazotrophicus, an endophyte of sugarcane (Saccharum officinarum L.). In this study, bothGlac. sacchari and Glac. diazotrophicus were isolated from internal sugarcane tissue, although the detection of both species was sporadic in all sugarcane-growing regions of Queensland tested. To confirm the ability of Glac. sacchari to live endophytically, an experiment was conducted in which the roots of micropropagated sugarcane plantlets were inoculated with Glac. sacchari, and the plantlets were subsequently examined for the presence of the bacterium in the stem cells. Pure cultures of Glac. sacchari were grown from homogenized surface sterilized sugarcane stems inoculated withGlac. sacchari.Electron microscopy was used to provide further conclusive evidence that Glac. sacchari lives as an endophyte in sugarcane. Scanning electron microscopy of (SEM) sugarcane plantlet stems revealed rod-shaped cells of Glac. sacchari within a transverse section of the plantlet stem cells. The numbers of bacterial cells inside the plant cell indicated a successful infection and colonization of the plant tissue. Using transmission electron microscopy, (TEM) bacterial cells were more difficult to find, due to their spatial separation. In our study, bacteria were mostly found singularly, or in groups of up to four cells inside intercellular spaces, although bacterial cells were occasionally found inside other cells.  相似文献   

20.
A proteomic view of G. diazotrophicus PAL5 at the exponential (E) and stationary phases (S) of cultures in the presence of low (L) and high levels (H) of combined nitrogen is presented. The proteomes analyzed on 2D-gels showed 131 proteins (42E+32S+29H+28L) differentially expressed by G. diazotrophicus, from which 46 were identified by combining mass spectrometry and bioinformatics tools. Proteins related to cofactor, energy and DNA metabolisms and cytoplasmic pH homeostasis were differentially expressed in E growth phase, under L and H conditions, in line with the high metabolic rate of the cells and the low pH of the media. Proteins most abundant in S-phase cells were stress associated and transporters plus transferases in agreement with the general phenomenon that binding protein-dependent systems are induced under nutrient limitation as part of hunger response. Cells grown in L condition produced nitrogen-fixation accessory proteins with roles in biosynthesis and stabilization of the nitrogenase complex plus proteins for protection of the nitrogenases from O(2)-induced inactivation. Proteins of the cell wall biogenesis apparatus were also expressed under nitrogen limitation and might function in the reshaping of the nitrogen-fixing G. diazotrophicus cells previously described. Genes whose protein products were detected in our analysis were mapped onto the chromosome and, based on the tendency of functionally related bacterial genes to cluster, we identified genes of particular pathways that could be organized in operons and are co-regulated. These results showed the great potential of proteomics to describe events in G. diazotrophicus cells by looking at proteins expressed under distinct growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号