首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Closed-canopy upland hardwood stands often lack diverse understory structure and composition, limiting available nutrition for white-tailed deer (Odocoileus virginianus) as well as nesting and foraging structure for other wildlife. Various regeneration methods can positively influence understory development; however, non-commercial strategies are needed to improve available nutrition in many stands, as some contain timber that is not ready to harvest and others are owned by landowners who are not interested in harvesting timber. Applications of herbicide and prescribed fire have improved availability of food and cover for deer and other wildlife in pine (Pinus spp.) systems. However, this strategy has not been evaluated in hardwood systems. To evaluate the influence of fire and herbicide treatments on available deer forage in upland hardwood systems, we measured forage availability and calculated nutritional carrying capacity (NCC) at 14% crude protein mixed diet, following 7 silvicultural treatments, including controls, in 4 mixed upland hardwood stands July–September 2007 and 2008. We compared NCC among forest treatments and within 4 paired warm-season forage food plots to evaluate the usefulness of food plots in areas where forests are managed. Nutritional carrying capacity estimates (deer days/ha) were greatest following canopy reduction with prescribed fire treatments in both years. Understory herbicide application did not affect species composition or NCC 1 year or 2 years post-treatment. Production of forage plantings exceeded that of forest treatments both years with the exception of early-maturing soybeans and retention cut with fire 2 years post-treatment. We encourage land managers to use canopy reducing treatments and low-intensity prescribed fire to increase available nutrition and improve available cover where needed in upland hardwood systems. In areas where deer density may limit understory development, high-quality forage food plots may be used to buffer browsing while strategies to reduce deer density and stimulate the forest understory are implemented. © 2011 The Wildlife Society.  相似文献   

2.
In Rocky Mountain forests, fire can act as a mechanism of change in plant community composition if postfire conditions favor establishment of species other than those that dominated prefire tree communities. We sampled pre and postfire overstory and postfire understory species following recent (1988–2006) stand-replacing fires in Glacier National Park (GNP), Montana. We identified changes in relative density of tree species and groups of species (xerophytes vs. mesophytes and reseeders vs. resprouters) in early succession. Postfire tree seedling densities were adequate to maintain prefire forest structure, but relative densities among species were variously changed. Changes were directly related to individual species’ response to severe fires. Most notably, relative density of the mesophytic resprouter quaking aspen (Populus tremuloides) and the xerophytic reseeder lodgepole pine (Pinus contorta) increased substantially following fire, with a concomitant decline in proportional abundance of other tree species that, in some cases, dominated stands before fire. Trends identified in our study suggest that forest community shifts toward those dominated by lodgepole pine and quaking aspen are occurring in GNP. Cover of understory species was not affected by tree species composition or density. These forest communities will likely change throughout succession with the addition of shade-intolerant species in early seral stages and shade-tolerant species later in succession. However, with increased fire frequency, the lodgepole pine-dominated postfire communities observed in our study may become more common throughout time.  相似文献   

3.
Question: Can current understory vegetation composition across an elevation gradient of Pinus ponderosa‐dominated forests be used to identify areas that, prior to 20th century fire suppression, were characterized by different fire frequencies and severities (i.e., historic fire regimes)? Location: P. ponderosa‐dominated forests in the montane zone of the northern Colorado Front Range, Boulder and Larimer Counties, Colorado, USA. Methods: Understory species composition and stand characteristics were sampled at 43 sites with previously determined fire histories. Indicator species analyses and indirect ordination were used to determine: (1) if stands within a particular historic fire regime had similar understory compositions, and (2) if understory vegetation was associated with the same environmental gradients that influence fire regime. Classification and regression tree analysis was used to ascertain which species could predict fire regimes. Results: Indicator species analysis identified 34 understory species as significant indicators of three distinct historic fire regimes along an elevation gradient from low‐ to high‐elevation P. ponderosa forests. A predictive model derived from a classification tree identified five species as reliable predictors of fire regime. Conclusions: P. ponderosa‐dominated forests shaped by three distinct historic fire regimes have significantly different floristic composition, and current understory compositions can be used as reliable indicators of historical differences in past fire frequency and severity. The feasibility demonstrated in the current study using current understory vegetation properties to detect different historic fire regimes, should be examined in other fire‐prone forest ecosystems.  相似文献   

4.
Abstract Plant responses to fire are variable between and within species and are influenced by numerous factors including fire severity. This study investigated the effects of fire severity on the regeneration and recruitment of forest eucalypts in the Cotter River Catchment, Australian Capital Territory (ACT). This study also examined the potential for the obligate seeder Eucalyptus delegatensis R.T. Baker (Myrtaceae) to expand into adjacent stands dominated by the facultative resprouter Eucalyptus fastigata H. Deane & Maiden (Myrtaceae) by seed shed and seedling establishment beyond the pre‐fire boundary. Sites were located in areas of either higher or lower fire severity, and transects were placed across the boundary of stands of E. delegatensis and E. fastigata. Species distributions, tree survival and seedling densities and heights were recorded, and the location of each boundary was determined as the region of maximum change in species composition along the transects. Eucalyptus delegatensis was the only eucalypt killed by higher severity fire. However, E. delegatensis seedling density was greater at higher severity sites than lower severity sites. Eucalyptus fastigata seedling density was low across all sites, with other eucalypts producing few, if any, seedlings. There was no evidence that E. delegatensis had increased its range into downslope stands dominated by E. fastigata. Patterns of vegetative recovery and seedling recruitment may be related to a number of factors, including differences in allocation patterns between seeders and sprouters, and the effects of overstory and understory competition. It is unclear what processes impede E. delegatensis seedling establishment beyond the stand boundary, but may involve an inability of E. delegatensis to shed seed sufficiently far downslope; unsuitable conditions for germination beyond the boundary; or, competition from a retained or resprouting overstory, despite the potential for increased dispersal distance soon after fire.  相似文献   

5.
林下草本层是人工林生态系统的基础功能层,对维护人工林生态系统的健康、稳定和功能具有重要意义。了解陕北“三北”防护林建设对林下草本群落特征的影响,并解析林下草本群落发育与林分结构和土壤养分变化的响应关系,对合理评估防护林建设工作和指导未来生态建设具有重要价值。为此,调查了陕北典型风沙区和黄土区不同造林阶段防护林下草本地上生物量和物种多样性的变化,并分析其与林分结构和土壤养分的关系。结果表明:(1)风沙区不同造林阶段人工林下草本平均地上生物量(23.64 g/m2)显著低于黄土区(44.53 g/m2)。随造林年限增加,风沙区林下草本地上生物量和物种多样性逐渐升高,而黄土区林下草本地上生物量和物种多样性则逐渐降低。(2)风沙区人工林土壤有效氮和有机碳随造林年限的增加逐渐升高,而黄土区人工林下土壤有效氮和有机碳则无明显变化趋势。(3)风沙区早期林下草本地上生物量和物种多样性升高主要得益于土壤养分的提升。而黄土区早期林下草本生物量和物种多样性降低主要是人工林郁闭度增加所致。风沙区防护林的建设促进了林下草本的发育,而黄土区早期人工林下草本出现退化现象。建议对风沙区进行防护林建设,而黄土区以自然恢复为主。  相似文献   

6.
Abstract. We studied the effect of burning frequency on the density and species richness of understory flowering stems in a Florida sandhill. Flowering stems were censused weekly for 54 weeks in six sites that had been burned one to six times in the previous 16 years. We concurrently measured overstory characteristics such as species composition, density and basal area. We used maximum likelihood and Akaike's Information Criterion to compare linear, quadratic, saturating, and null models of community response to repeating burning. We did not find a relationship between species richness, diversity or flowering stem density and fire frequency. Tree density was related to fire frequency and may represent an indirect pathway for fire effects on understory characteristics. While we found no support for the Intermediate Disturbance Hypothesis, an analysis of our experimental design indicated that we had low statistical power. We develop the hypothesis that a saturating model of response to fire best describes understory species richness in our system. We test this hypothesis using the most extensive published fire data set we are aware of and find support for a saturating model.  相似文献   

7.
Endophytic fungi were isolated from leaves of Neolitsea sericea, a major lauraceous tree in the laurel forests of southern Kyushu, collected from the understory layer of broadleaf and conifer stands. Cytosphaera sp. and a species of Ascomycetes in leaf blade segments, plus a xylariaceous species and Phomopsis spp. in petiole segments, were isolated at relatively high frequency. In general, isolation frequencies of endophytes were higher in petiole than blade segments. In blade segments, patterns of endophyte isolation were quite different among stands, while relatively similar in petiole segments. Significant effects of sampling sites or canopy vegetation were rarely detected. the understory layer of laurel forests. Neolitsea sericea is an evergreen broadleaf lauraceous tree, widely distributed in areas of eastern Asia. In southern Kyushu, it is one of the most common trees, growing both as canopy and understory species. In this study, endophytes were isolated from the leaves of N. sericea growing in the understory layer of conifer and broadleaf forest stands to survey the endophytes of N. sericea leaves and to examine the effect of the canopy layer on endophytic mycobiota in understory plants.  相似文献   

8.
We compared four types of 30‐year‐old forest stands growing on spoil of opencast oil shale mines in Estonia. The stand types were: (1) natural stands formed by spontaneous succession, and plantations of (2) Pinus sylvestris (Scots pine), (3) Betula pendula (silver birch), and (4) Alnus glutinosa (European black alder). In all stands we measured properties of the tree layer (species richness, stand density, and volume of growing stock), understory (density and species richness of shrubs and tree saplings), and ground vegetation (aboveground biomass, species richness, and species diversity). The tree layer was most diverse though sparse in the natural stands. Understory species richness per 100‐m2 plot was highest in the natural stand, but total stand richness was equal in the natural and alder stands, which were higher than the birch and pine stands. The understory sapling density was lower than 50 saplings/100 m2 in the plantations, while it varied between 50 and 180 saplings/100 m2 in the natural stands. Growing stock volume was the least in natural stands and greatest in birch stands. The aboveground biomass of ground vegetation was highest in alder stands and lowest in the pine stands. We can conclude that spontaneous succession promotes establishment of diverse vegetation. In plantations the establishment of diverse ground vegetation depends on planted tree species.  相似文献   

9.
The Australian tree Melaleuca quinquenervia (melaleuca) formed dense monocultural forests several decades after invading parts of Florida and the Caribbean islands. These dominant forests have displaced native vegetation in sensitive wetland systems. We hypothesized that native plant diversity would increase following recent reductions in density of mature melaleuca stands in south Florida. We therefore examined data on changes in melaleuca densities and plant species diversity derived from permanent plots that were monitored from 1997 to 2005. These plots were located within mature melaleuca stands in nonflooded and seasonally-flooded habitats. Two host-specific biological control agents of melaleuca, Oxyops vitiosa and Boreioglycaspis melaleucae, were introduced during 1997 and 2002, respectively. Also, an adventive rust fungus Puccinia psidii and lobate-lac scale Paratachardina pesudolobata became abundant during the latter part of the study period. Overall melaleuca density declines in current study coincided with two to four fold increases in plant species diversity. The greatest declines in melaleuca density as well as the greatest increases in family importance values and species diversity indices occurred in nonflooded as compared to seasonally-flooded habitats. Most pioneer plant species in study sites belonged to Asteraceae, Cyperaceae, Poaceae, and Ulmaceae. The rapid reduction in melaleuca density and canopy cover during the study period may be attributed to self-thinning accelerated by the negative impact of natural enemies. Densities of other woody plants, particularly Myrica and Myrsine, which were sparsely represented in the understory by a few suppressed individuals also declined during the same period, possibly due to infestation by the generalist lac-scale. These findings indicate that natural-enemy accelerated self-thinning of melaleuca densities is positively influencing the native plant diversity and facilitating the partial rehabilitation of degraded habitats.  相似文献   

10.
Abstract. We studied plant diversity of the understory vascular vegetation in 40 yr-old plantations (immature stands) and old-growth forest stands on southwestern Vancouver Island, British Columbia, Canada. Site-specific comparisons using several indices of species diversity were made between: (1) immature stands segregated according to the canopy cover and dominant canopy tree species; and (2) immature and old-growth stands. There were no significant differences (P < 0.05) among immature stands in species richness (S) and the Shannon-Wiener index (H′), in relation to the canopy cover or in S, H′ and evenness (E) in relation to the dominant canopy tree species. Using the same indices, the plant diversity varied with edaphic conditions (represented by five site associations) and time (represented by two developmental stages). At both stand- and site levels, plant diversity increased with increasing soil moisture, from slightly dry to moist sites, and with increasing plant-available soil nitrogen in both immature and old-growth stands; and the plant diversity of immature stands across the sites studied was considerably lower than in old-growth stands, regardless of site association. The indices of plant diversity, floristic similarity indices, and species turnover rates indicated that the immature stands had their plant diversity at a minimum, but a drastic loss of diversity expected in the stem exclusion stage had not materialized. We attributed decline in plant diversity to the absence of old-growth structural features in immature stands. Several measures to foster the stand-level diversity were proposed.  相似文献   

11.
The understory of exotic tree plantations can have non‐negligible native species richness. Ecological restoration of these sites may include the harvest of trees, depending on the tradeoff between timber income and harvest impacts on biodiversity. This study aimed to investigate how a site can recover from harvest disturbance, by comparing the regeneration of woody species in the understory of two types of 37‐year‐old Pinus taeda plantation (P1 and P2, high and low relative density of pine seedlings in the understory, respectively), with stands that were similar to P2 but subjected to harvest and then abandoned for 15 years (R sites). Secondary forests (SF) were used as references. We sampled three different sites for each stand condition; soil chemical properties, estimations of litter mass, and canopy cover were measured. P1 had low species diversity, and P2 and R had 50 and 46% of SF richness, respectively. The R site contained few pine saplings and was floristically similar to P2; this indicated that 15 years was sufficient for the recovery of plant diversity to near pre‐harvesting levels. Soil fertility was highest in SF and lowest in P1. Thus old plantations of P. taeda with low relative density of pine juveniles can be cost‐effective starting points for restoration. Despite the destructive effects of pine harvest, recovery of native species can occur rapidly. In situations in which clearcutting of pine stands is not planned or possible, modest thinning of P. taeda adults and/or intensive thinning of juveniles could expedite restoration.  相似文献   

12.
Background: Boreal forest understory plant communities are known to be resilient to fire – the species composition of stands after a fire is quite similar to the pre-fire composition. However, we know little about recovery of individual plants within particular locations in forest stands (i.e. plot-level changes) since we usually do not have pre-fire data for plots.

Aims: We wanted to determine whether species recruited into the same or different locations in a Pinus banksiana stand that experienced a severe wildfire.

Methods: We used pre-existing permanent plots to evaluate the cover of understory after an unplanned wildfire.

Results: Across the entire stand nine of 47 species showed a significant change in cover. The largest change in a plant functional group was in the mosses, with all species present before fire being eliminated. There was no change in species diversity or total cover. At the plot level, species composition showed a much greater change. An average of 47% of the species present in a plot before the fire were absent in the same plot after the fire, and the total species turnover in plots was 88% of the species present before the fire. The plots showed a similar shift in species composition.

Conclusions: These results confirm that boreal forest communities show a high degree of resilience to fire, but within a forest stand species will be found in different locations following fire, potentially exposing them to a different set of biotic and abiotic conditions in these new locations.  相似文献   

13.
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non‐native species density in a second‐growth ponderosa pine forest. Location: Challenge Experimental Forest, northern Sierra Nevada, California, USA. Methods: We compared the effects of mastication only, mastication with supplemental treatments (tilling and prescribed fire), hand removal, and a control on initial understory vegetation response using a randomized complete block experimental design. Each block (n=4) contained all five treatments and understory vegetation was surveyed within 0.04‐ha plots for each treatment. Results: While mastication alone and hand removal dramatically reduced the midstory vegetation, these treatments had little effect on understory richness compared with control. Prescribed fire after mastication increased native species richness by 150% (+6.0 species m2) compared with control. However, this also increased non‐native species richness (+0.8 species m2) and shrub seedling density (+24.7 stems m2). Mastication followed by tilling resulted in increased non‐native forb density (+0.7 stems m2). Conclusions: Mechanical mastication and hand removal treatments aided in reducing midstory fuels but did not increase understory plant diversity. The subsequent treatment of prescribed burning not only further reduced fire hazard, but also exposed mineral soil, which likely promoted native plant diversity. Some potential drawbacks to this treatment include an increase of non‐native species and stimulation of shrub seed germination, which could alter ecosystem functions and compromise fire hazard reduction in the long‐term.  相似文献   

14.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

15.
Questions: Is species diversity affected in protected areas where human activities are permitted or tolerated? On plots of a fixed size, does stem density alone predict number of species? Are differences in density related to disturbance and altitude? Location: Achanakmar‐Amarkantak Biosphere Reserve, central India. Methods: 42 sites, each with three replicate 10‐m radius plots, were examined. All trees (≥ 30 cm GBH) in each plot were measured for girth at breast height. α‐diversity, species richness and evenness were calculated for each site. The sites were ordinated by Nonmetric Multidimensional Scaling (NMS) using relative importance values of component species. Correspondence Analysis was used to broadly delineate communities. Anthropogenic disturbances were recorded in terms of percentage of trees lopped, scale of lopping, number of domestic livestock dung piles and foot trails (both livestock and people) for each plot. Results: The NMS analysis exhibited a near linear arrangement of sites with no evidence of discrete vegetation zones. NMS axes were significantly related to altitude and disturbance scores. With increasing elevation, basal area increased but number of species, α‐diversity and its components declined monotonically. The number of species and indices of species diversity were positively associated with tree lopping and also with total disturbance. Number of species was controlled by stem density only in plots not dominated by Shorea robusta. Conclusions: Recent levels of human disturbance are associated with higher species diversity in this biosphere reserve. There is some evidence that stands at all altitudes follow the same successional pattern to dominance by Shorea, a successional pattern that also results in decreased diversity without disturbance.  相似文献   

16.
Mechanical clearing of understory vegetation is increasingly used in Euro-Mediterranean forests to reduce fire hazard, yet its long-term consequences for biodiversity remain poorly understood. This study analysed the influence of time since understory management and management frequency, on herbaceous species richness, cover and composition, functional richness and composition, and richness and cover within functional groups (life and growth forms, dispersal strategy, clonality, and plant height), using a chronosequence of cork oak (Quercus suber) stands spanning about 70 years. Overall species richness was virtually constant over time, but the richness of species with annual life form and plasticity in height was much higher in recently and recurrently treated stands; the opposite was found for perennial (mainly hemicryptophytes and chamaephytes), tussock-forming and clonal species richness, and functional richness. Overall herbaceous cover and that of annual, semi-basal, non-clonal and plastic species (in height) were favoured by recent and recurrent fuel treatments; cover by perennial (hemicryptophytes and chamaephytes), short basal, tussock-forming, and clonal species tended to increase for >10–20 years after management, and declined with management frequency. There was a marked shift in species and functional composition associated with time since understory management and management frequency. These findings suggest that widespread fuel management at <10 year intervals may shift understory herb communities to early-successional stages, impairing the persistence of species and functional groups recovering slowly after disturbance. Fuel management needs to balance the dual goals of fire hazard reduction and biodiversity conservation, retaining undisturbed patches in landscapes otherwise managed to reduce fuel accumulation.  相似文献   

17.
Overabundance of woody plants in semiarid ecosystems can degrade understory herbaceous vegetation and often requires shrub reduction and seeding to recover ecosystem services. We used meta‐analysis techniques to assess the effects of fire and mechanical shrub reduction over two post‐treatment timeframes (1–4 and 5–10 years) on changes in cover and frequency of 15 seeded species at 63 restoration sites with high potential for recovery. Compared to mechanical treatments, fire resulted in greater increases in seeded species. Native shrubs did not increase, and forbs generally declined over time; however, large increases in perennial grasses were observed, suggesting that seeding efforts contributed to enhanced understory herbaceous conditions. We found greater increases in a few non‐native species than native species across all treatments, suggesting the possibility that interference among seeded species may have influenced results of this regional assessment. Differences among treatments and species were likely driven by seedbed conditions, which should be carefully considered in restoration planning. Site characteristics also dictated seeded species responses: while forbs showed greater increases in cover over the long term at higher elevation sites considered to be more resilient to disturbance, surprisingly, shrubs and grasses had greater increases in cover and frequency at lower elevation sites where resilience is typically much lower. Further research is needed to understand the causes of forb mortality over time, and to decipher how greater increases of non‐native relative to native seeded species will influence species diversity and successional trajectories of restoration sites.  相似文献   

18.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

19.
Moola  F.M.  Vasseur  L. 《Plant Ecology》2004,172(2):183-197
We investigated the impacts of clearcutting on the ground vegetation of remnant late-successional coastal Acadian forests in southwestern Nova Scotia. Vegetation was sampled in 750 1-m2 quadrats established in 16 stands belonging to different recovery periods since clearcutting (3–54 years) and 9 late-successional forests (100–165 years) with no signs of significant human disturbance. Our objectives were to: i) describe the changes in species richness, diversity, and abundance of ground vegetation after clearcutting; ii) examine the responses of residual species (i.e., late-successional flora) to clearcutting; and iii) determine whether any forest species were restricted to or dependent upon the late-successional stages of stand development for maximal frequency and/or abundance. Although clearcutting had no immediate impact on overall alpha richness or diversity, the richness and diversity of residual plants declined after canopy removal and showed no evidence of recovery over 54 years of secondary succession. Consequently, compositional differences between secondary and late-seral stands persisted for many decades after clearcutting. Several understory herbs (e.g., Coptis trifolia (L.) , Oxalis montana (L.), Monotropa uniflora (L.)) were restricted to or attained their highest frequency and abundance in late-seral forests. These results suggest that the preservation of remnant old stands may be necessary for the maintenance of some residual plants in highly disturbed and fragmented forest landscapes in eastern Canada.  相似文献   

20.

High densities of cattle (Bos taurus) and wild ungulates (Rocky Mountain elk, Cervus canadensis; mule deer, Odocoileus hemionus) have impacted the abundance and population dynamics of palatable woody species in forests of the interior Pacific Northwest, USA. As a result, large shrubs are functionally absent from some forest stands. Physical structures can provide safe sites for browsed species to persist within forests. We evaluated the role of coarse woody debris and conifer trees in protecting a common, yet heavily browsed species, serviceberry (Amelanchier alnifolia) from elk, deer and cattle. We measured height and architecture of individuals and the degree to which they were protected by coarse woody debris and unpalatable conifers in areas exposed to ungulates and in ungulate exclosures. Multiple linear regression and quantile regression were used to test for the effects of protection and foliar overlap on plant height. Results showed that increased protection and foliar overlap resulted in a lower proportion of shrubs exhibiting arrested architecture. Shrub height increased as foliar overlap and protection increased, with effects primarily restricted to high levels of protection (>?300° surrounded by nearby conifer trees and/or coarse woody debris). Taller shrubs were most associated with intermediate levels of foliar overlap. Results support the hypothesis that understory structural elements can act as protective barriers. Forest management actions (e.g., prescribed fire, understory thinning) that reduce the prevalence of structures may unintentionally suppress browsed shrub species and contribute to the continued functional absence of tall deciduous species in dry conifer forests.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号