首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of legume seeds is accompanied by the synthesis of storage proteins and lectins, and the deposition of these proteins in protein-storage vacuoles (protein bodies). We examined the subcellular distribution, in developing seeds of the common bean, Phaseolus vulgaris L., of the major storage protein (phaseolin) and the major lectin (phytohemagglutinin, PHA). The proteins were localized using an indirect immunocytochemical method in which ultrathin frozen sections were immunolabeled with rabbit antibodies specific for either PHA or phaseolin. Bound antibodies were then localized using goat-anti-rabbit immunoglobulin G adsorbed onto 4- to 5-nm colloidal gold particles. The sections were post-fixed with OsO4, dehydrated, and embedded in plastic on the grids. Both PHA and phaseolin exhibited a similar distribution in the storage-parenchyma cells, being found primarily in the developing protein bodies. Endoplasmic reticulum and Golgi complexes (cisternal stacks and associated vesicles) also were specifically labeled for both proteins, whereas the cytosol and other organelles, such as mitochondria, were not. We interpret these observations as supporting the hypothesis that the transport of storage proteins and lectins from their site of synthesis, the rough endoplasmic reticulum, to their site of deposition, the protein bodies, is mediated by the Golgi complex.Abbreviations ER endoplasmic reticulum - IgG immunoglobulin G - PBS phosphate-buffered saline - PHA phytohemagglutinin  相似文献   

2.
Nick Harris 《Planta》1978,141(2):121-128
Following a zinc iodine-osmium tetroxide fixation, nuclear pore distribution was studied in 0.3-m sections from cotyledons of developing Vicia faba L. Localised absence of nuclear pores was found to be associated with proximity of organelles to the nucleus. Golgi cisternae and mitochondria are associated with areas of pore absence while cisternal endoplasmic reticulum and tubular endoplasmic reticulum are linked with areas showing reduction in pore density. Pores were seen in the nuclear membrane adjacent to vacuoles. Pattern analysis of pore distribution indicated possible clustering within an overall regularity.Abbreviations ER endoplasmic reticulum - ZIO zinc iodine-osmium tetroxide  相似文献   

3.
Summary At the onset of previtellogenesis, the oocytes of Acerentomon gallicum begin to grow and increase their content of organelles. The nuage material in the oocytes at first increases in amount, then declines gradually to disappear completely from oocytes that have attained 50 m in diameter. During the growth period, new dictyosomes, mitochondria and ribosomes appear. Numerous vesicles become detached from the cell membrane and subsequently fuse into cisternae, thus forming extensive complexes of the rough endoplasmic reticulum. In oocytes with diameters between 50 and 100 m the Golgi complexes show a considerable increase in activity, and many lamellar bodies arise from mitochondria that have undergone specific transformation.This work was supported by Government Problem Grant II-1.3.13  相似文献   

4.
K. J. Oparka  N. Harris 《Planta》1982,154(2):184-188
The ultrastructure of protein deposition in the starchy endosperm of developing rice (Oryza sativa L.) grains was examined in conventionally fixed (glutaraldehyde and osmium tetroxide) tissues and also in thick sections (0.3 m) of zinc iodide-osmium tetroxide post-fixed tissue. Three types of previously characterised protein body were observed and it was shown that each type was initiated by dilations of the endoplasmic reticulum. Crystalline type protein bodies were initiated by a ribosome-free dilation from rough cisternal endoplasmic reticulum and developed by inclusion of protein from dictyosome-derived vesicles. The large spherical and small spherical protein bodies developed within the cisternae of the rough endoplasmic reticulum.Abbreviations Cr crystalline protein body - DAF days after fertilization - ER endoplasmic reticulum - Ls large spherical protein body - Ss small spherical protein body - ZIO zinc iodide-osmium tetroxide  相似文献   

5.
Developing wheat (Triticum aestivum L.) endosperm was examined using ultrathin sections prepared from tissues harvested at 5, 9, 16 and 25 d after flowering. Protein bodies were evident by 9 d and displayed a variety of membranous structures and inclusions. The Golgi apparatus was a prominent organelle at all stages, and by 9 d was associated with small electron-dense inclusions. By immunocytochemical techniques, gliadin (wheat prolamine) was localized within these vesicles and in homogeneous regions of protein bodies, but not in the lumen of the rough endoplasmic reticulum. The protein bodies appear to enlarge by fusion of smaller protein bodies resulting in larger, irregular-shaped organelles. The affinity of the Golgi-derived vesicles for gliadin-specific probes during the period of maximal storage-protein synthesis and deposition indicates that this organelle includes the bulk, if not all, of the gliadin produced. The involvement of the Golgi apparatus in the packaging of gliadins into protein bodies indicates a pathway which differs from the mode of prolamine deposition in other cereals such as maize, rice and sorghum, and resembles the mechanism employed for the storage of rice glutelin and legume globulins.Abbreviations ER endoplasmic reticulum - IgG immunoglobulin G - DAF days after flowering  相似文献   

6.
本文应用透射电镜对朱顶红成熟花粉水合、活化和萌发的动态过程中营养细胞质的结构和组成变化进行了观察。成熟花粉具质体、线粒体、内质网、高尔基体。微丝束以聚集体的形式存在。花粉活化后,细胞器的数目和结构发生显著变化:质体和线粒体的片层明显增加,内质网片层狭窄,高尔基体活跃产生小泡,脂体降解及微丝聚集体散开。花粉萌发后,细胞质中出现周质微管和被刺小泡,此期细胞器的变化不明显。微丝以纤丝状遍布整个花粉管中。  相似文献   

7.
Summary Fine structural features of pinealocytes of cotton rats (Sigmodon hispidus) were examined. Golgi complexes, mitochondria, endoplasmic reticulum and polysomes are usual organelles seen in the perikaryonal cytoplasm of pinealocytes. Many non-granulated vesicles (40 to 80 nm in diameter) and a few granulated vesicles (about 100 nm in diameter) are associated with the Golgi cisternae. Occasionally, the cisternae contain granular materials. The perikaryonal cytoplasm of pinealocytes is characterized by the presence of inclusion bodies. These bodies are usually round in shape, not bounded by a limiting membrane and composed of fine granular or filamentous materials of high electron-opacity, which are similar in appearance to the substance seen in the nucleolonema. Pinealocyte processes, filled with abundant non-granulated vesicles and some granulated vesicles, are mainly found within the parenchyma and occasionally in perivascular spaces.Supported in part by NSF grant no. PCM 77-05734 and NIH grant no. HD-10202 (Morphology Core)  相似文献   

8.
Giardia lamblia,a primitive eukaryotic cell, lacks organelles such as mitochondria, peroxisomes, and a typical Golgi complex and presents a system of vesicles located below the plasma membrane. We used fluorescence and electron microscopy to better characterize the peripheral vesicles. Incubation of living cells with acridine orange showed that the peripheral vesicles correspond to an acidic compartment. Incubation with lucifer yellow, and with horseradish peroxidase, showed labeling of the peripheral vesicles even after several hours. Acid phosphatase was localized in the endoplasmic reticulum and in most of the peripheral vesicles. On the other hand, glucose 6-phosphatase, an endoplasmic reticulum marker, was observed in the endoplasmic reticulum cisternae and in some peripheral vesicles. A similar labeling pattern was observed using the zinc iodide technique, which reveals SH-containing proteins. Three-dimensional reconstruction and electron microscopy tomography of cells stained for acid phosphatase and glucose-6-phosphatase revealed the connection between some vesicles and profiles of the endoplasmic reticulum. Taken together, our observations suggest that trophozoites ofG. lambliapresent an endosomal–lysosomal system concentrated in a single system, the peripheral vesicles, which may represent an ancient organellar system that later on subdivided into compartments such as early and late endosomes and lysosomes.  相似文献   

9.
The development of glyoxysomal marker enzyme activities and concomitant ultrastructural evidence for the ontogeny of glyoxysomes has been studied in cotyledons of dark-grown watermelon seedlings (Citrullus vulgaris Schrad., var. Florida Giant). Catalase (CAT, EC 1.11.1.6) was stained in glyoxysomal structures with the 3,3-diaminobenzidine procedure. Serial sections and high-voltage electron microscopy were used to analyze the three-dimensional structure of the glyoxysomal population. With early germination CAT was localized in three distinct cell structures: spherical microbodies already present in freshly imbibed cotyledons; in appendices on lipid bodies; and in small membrane vesicles between the lipid bodies. Due to their ribosome-binding capacity, both appendices and small vesicles were identified as derivatives of the endoplasmic reticulum (ER). In the following period, glyoxysome formation and lipid body degradation were found to be inseparable processes. The small CAT-containing vesicles attach to a lipid body on a restricted area. Both lipid body appendices and attached cisternae enlarge around and between tightly packed lipid bodies and eventually become pleomorphic glyoxysomes with lipid bodies entrapped into cavities. The close contact between lipid body and glyoxysomes is maintained until the lipid body is digested and the glyoxysomal cavity becomes filled with cytoplasm. During the entire period of increase in glyoxysomal enzyme activities, no evidence was obtained for destruction of glyoxysomes, but small CAT-containing vesicles were observed from day 2 through day 6 after imbibition, indicating a continuous de novo formation of glyoxysomes. This study does not substantiate the hypothesis that glyoxysomes bud directly from the ER. Rather, ER-derivatives, e.g., lipid body appendices or cisternae attached to lipid bodies are interpreted as being glyoxysomal precursors that grow in close contact with lipid bodies both in volume and surface membrane area.Abbreviations CAT catalase - DAB 3,3 diaminobenzidine tetrahydrochloride - ER endoplasmic reticulum - GOX glycolate oxidase - HPR hydroxypyruvate reductase - HVEM high-voltage electron microscopy - ICL isocitrate lyase - MS malate synthase - RER rough endoplasmic reticulum In the figures bars represent 0.1 m (if not stated otherwise)  相似文献   

10.
M. L. Parker  C. R. Hawes 《Planta》1982,154(3):277-283
The ultrastructure and distribution of the Golgi apparatus in developing wheat endosperm was investigated using a zinc iodide-osmium tetroxide staining complex in conjunction with low and high voltage electron microscopy. Dictyosomes were numerous in starchy endosperm and aleurone at 15 days after anthesis, and during the period of rapid storage protein deposition 25 d after anthesis. Fewer dictyosomes were seen in maturing endosperm. Two types of vesicles were associated with the dictyosomes; small, heavily-stained vesicles were sited at the ends of fine tubules which extend from the cisternae, and larger less-stained vesicles were associated with the periphery of the cisternae. Stereo-pairs of micrographs up to 1 m thick were taken to demonstrate the interconnections between cisternal and tubular endoplasmic reticulum. Elements of tubular ER were closely associated with dictyosomes, but connections were not observed. These results are discussed in relation to the transport of endosperm storage proteins from their site of synthesis on the cisternal ER to their site of storage, the protein bodies.  相似文献   

11.
1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mmicro in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.  相似文献   

12.
Summary The modified protein A-gold immunocytochemical technique was applied to the localization of amylase in rat pancreatic acinar cells. Due to the good ultrastructural preservation of the cellular organelles obtained on glutaraldehyde-fixed, osmium tetroxide-postfixed tissue, the labelling was detected with high resolution over the cisternae of the rough endoplasmic reticulum (RER), the Golgi apparatus, the condensing vacuoles, the immature pre-zymogen granules, and the mature zymogen granules. Over the Golgi area, the labelling was present over the transitional elements of the endoplasmic reticulum, some of the smooth vesicular structures at thecis- andtrans-faces and all the different Golgi cisternae. The acid phosphatase-positive rigidtrans-cisternae as well as the coated vesicles were either negative or weakly labelled. Quantitative evaluations of the degree of labelling demonstrated an increasing intensity which progresses from the RER, through the Golgi, to the zymogen granules and have identified the sites where protein concentration occurs. The results obtained have thus demonstrated that amylase is processed through the conventional RER-Golgi-granule secretory pathway in the pancreatic acinar cells. In addition a concomitance has been found between some sites where protein concentration occurs: thetrans-most Golgi cisternae, the condensing vacuoles, the pre- and the mature zymogen granules, and the presence of actin at the level of the limiting membranes of these same organelles as reported previously (Bendayan, 1983). This suggests that beside their possible role in transport and release of secretory products, contractile proteins may also be involved in the process of protein concentration.  相似文献   

13.
Summary The fine localization of urate oxidase was investigated with immunoferritin technique directly applied to ultrathin sections of fixed and frozen mouse liver tissue. The ferritin particles indicating the urate oxidase antigen were localized in microbodies, cisternae of rough- and smooth-surfaced endoplasmic reticulum (ER), and Golgi vacuoles and vesicles. In ER the particles were abundantly observed in dilated terminal portions. In addition, Golgi lamellae were slightly stained comparing with the vacuoles and vesicles. The staining with ferritin particles was inhibited by the treatment of unconjugated anti-urate oxidase before ferritin conjugate staining. From these results, the formation of microbody was discussed.  相似文献   

14.
Nick Harris 《Planta》1979,146(1):63-69
The changes in endoplasmic reticulum (ER) morphology during seed development have been followed using a thick section electron microscope technique. The tissues were stained with a zinc iodineosmium tetroxide complex which preferentially accumulated in the lumen between double membranes. Sections up to 2 m in thickness were examined in a high voltage electron microscope (HVEM) with tilt facility to produce stereo pairs. The micrographs from HVEM showed an increase in the extent of interconnecting tubular and cisternal ER during the protein deposition phase of seed maturation with subsequent degeneration of the cisternae to a reticular form during the final seed maturation phase. No evidence of cisternal ER vesicles was found, instead our work suggests that such structures are artefacts of thin sectioning with the so-called vesicles representing the interconnection of cisternal and tubular ER. The results are discussed with reference to the transport of storage protein from its site of synthesis, the rough cisternal ER, to that of accumulation, the vacuolar protein bodies.Abbreviations ER endoplasmic reticulum - HVEM high voltage electron microscopy  相似文献   

15.
THE FINE STRUCTURE OF NEURONS   总被引:6,自引:4,他引:2       下载免费PDF全文
1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mµ in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.  相似文献   

16.
The mature pollen grain of Papaver rhoeas is bicellular. The vegetative cell contains numerous mitochondria; endoplasmic reticulum is not very extensive and there are few ribosomes and plastids. Golgi bodies are in a very active state. The generative cell is lobed and spindle-shaped. The cytoplasm contains many, generally longitudinally arranged, bundles of microtubules. Other organelles are few in number, and include mitochondria, Golgi bodies and short cisternae of endoplasmic reticulum.  相似文献   

17.
Isolated human lung mast cells were used to identify subcellular sites of basic fibroblast growth factor using a postembedding immunogold method. The factor was present in quantity in secretory granules and cytoplasmic lipid bodies. Cisterns of smooth endoplasmic reticulum and ribosome clusters, closely associated with lipid bodies, contained the factor as did the nuclear matrix. Factor-positive lipid bodies were adjacent to nuclear pores and often indented perinuclear cisternae. Altered secretory granules with reduced density, characteristic of secretion by piecemeal degranulation in mast cells, showed reduced gold label for basic fibroblast growth factor; small, electron-lucent (80–100nm) transport vesicles near altered granules were labelled for the factor. Since these mature mast cells do not display extensive arrays of classical secretory organelles, such as rough endoplasmic reticulum and Golgi structures, these new subcellular localizations for basic fibroblast growth factor suggest several possible alternative release routes for a cytokine devoid of a signal sequence characteristic of regulated secretory proteins.  相似文献   

18.
Free alveolar macrophages of normal mouse lung have been studied in the electron microscope. The tissue was obtained from several young adult white mice. One other animal was instilled intranasally with diluted India ink 1(1/2) hours prior to the removal of the lung. Thin sections of the osmium-fixed, methacrylate-embedded tissue were examined either in an RCA EMU 2 electron microscope or in a Siemens and Halske Elmiskop I b. A few thick sections obtained from the same embeddings were stained for iron. The normal alveolar macrophages, which are usually in contact with the alveolar epithelium, were found to contain a variety of inclusion bodies, along with the usual cytoplasmic components like mitochondria, endoplasmic reticulum, and Palade granules. Another typical component of the cytoplasm of these cells which appears as small ( approximately 6 mmicro) very dense granules of composite fine structure is interpreted as ferritin. It is assumed that this ferritin is formed from red blood cells ingested by the alveolar macrophages. The macrophages in the alveoli were found to phagocytize intranasally instilled India ink particles. Such cells, with engulfed India ink particles, were often of more rounded form and the particles were frequently seen lying inside membrane-bound vacuoles or vesicles of the cytoplasm. The membrane of a few vesicles containing India ink particles was seen as the invaginated portion of the cell plasma membrane, and in one instance these same vesicles were seemingly interconnected with a rough surfaced cisterna of the endoplasmic reticulum. The process of phagocytosis is recognized as related to the "normal" process of pinocytosis.  相似文献   

19.
The in situ localization of Ca2+ in stage I sporangiophores of the fungus Phycomyces blakesleeanus was achieved with the potassium pyroantimonate technique. Precipitates of calcium-antimonate were present in mitochondria, vacuoles, endoplasmic reticulum and adjacent cytoplasm, Golgi-like bodies, and nuclei but not cell walls. Material treated with the calcium chelator EGTA lacked these precipitates. The preferential localization of Ca2+ in mitochondria, endoplasmic reticulum and vacuoles suggests that these organelles modulate the level of this cation in sporangiophores of P. blakesleeanus.Abbreviations EGTA ethyleneglycol-bis-(-aminoethyl ether) N,N, tetraacetic acid  相似文献   

20.
The morphophysiological changes that occur during oocyte primary growth in Serrasalmus spilopleura were studied using ultrastructural cytochemical techniques. In the previtellogenic oocytes endoplasmic reticulum components, Golgi complex cisternae and vesicles, lysosomes, multivesicular bodies and some electron-dense vesicles react to acid phosphatase (AcPase) detection. The endoplasmic reticulum components, Golgi complex cisternae and vesicles also react to osmium tetroxide and potassium iodide impregnation (KI). These structures, except for the Golgi complex cisternae, are strongly contrasted by osmium tetroxide and zinc iodide impregnation (ZIO). Some electron-dense vesicles are ZIO-stained, while microvesicles in the multivesicular bodies and other large isolated cytoplasmic vesicles are contrasted by KI. At primary oocyte growth, the activity of the endomembranous system and the proliferation of membranous organelles are intense. The biosynthetic pathway of the lysosomal proteins such as acid phosphatase, involves the endoplasmic reticulum, Golgi complex, vesicles with inactive hydrolytic enzymes and, finally, the lysosomes. The oocyte endomembranous system have reduction capacity and are involved in the metabolism of rich in SH groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号