首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rac1 and Cdc42 are members of the Rho family of small GTPases and have been shown to induce lamellipodia and filopodia formation, respectively. This leads to changes in cytoskeleton organization and as a consequence affects cell migration. In the present work we demonstrate that endogenous Rac1 and Cdc42 interact with calmodulin (CaM) in a Ca(2+)-dependent fashion. The interaction of Rac1 and Cdc42 with CaM was shown to be direct. This novel interaction was further confirmed in platelets using co-immunoprecipitation studies. Using CaM database analysis and in vitro peptide competition assays we have identified a 14 amino acid region in Rac1 that is essential for CaM binding. The scrambled form of the peptide did not bind CaM demonstrating specificity of the predicted CaM binding region in Rac1. A similar region capable of binding CaM exists in Cdc42. Furthermore, using the optimal activation time-point for each GTPase, the role of CaM in the function of Rac1 and Cdc42 was examined. Results demonstrate that in human platelets, thrombin caused maximal activation of Rac1 and Cdc42 at ~60 s and ~25 s respectively. The potent CaM antagonist W7 abolished thrombin-mediated activation of Rac1. However, addition of W7 resulted in the activation of Cdc42 over basal and W7 did not inhibit thrombin-mediated activation of Cdc42. The less potent CaM inhibitor, W5, did not have any effect on Rac1 and Cdc42 activation. The results demonstrate that in platelets, binding of CaM to Rac1 increases its activation while its binding to Cdc42 reduces the activation of this GTPase. This suggests an important role for CaM in coordinating Rac1 and Cdc42 activation and in the regulation of cytoskeleton remodeling.  相似文献   

2.
RhoGDI is required for Cdc42-mediated cellular transformation   总被引:6,自引:0,他引:6  
Lin Q  Fuji RN  Yang W  Cerione RA 《Current biology : CB》2003,13(17):1469-1479
BACKGROUND: Cdc42, a Rho-related small GTP binding protein, plays pivotal roles in actin cytoskeletal organization, Golgi vesicular trafficking, receptor endocytosis, and cell cycle progression. However, the target/effectors mediating these cellular activities and, in particular, those responsible for Cdc42-mediated cell growth regulation and transformation are still being determined. In this study, we set out to examine how the regulatory protein RhoGDI influences the cellular responses elicited by activated Cdc42. RESULTS: X-ray crystallographic analysis of the Cdc42-RhoGDI complex suggested that arginine 66 of Cdc42 is essential for its interaction with RhoGDI. Here we show that mutation of either arginine 66 or arginine 68 within the Switch II domain of Cdc42 completely abolished the binding of Cdc42 to RhoGDI without affecting the binding of other known regulators or target/effectors of this GTP binding protein. Introduction of the RhoGDI binding-defective mutation R66A within a constitutively active Cdc42(F28L) background was accompanied by changes in cell shape and an accumulation of Cdc42 in the Golgi when these cells were compared to those expressing Cdc42(F28L). However, the most striking change was that unlike Cdc42(F28L), which was able to induce the transformation of NIH 3T3 fibroblasts as assayed by their growth in low serum or their ability to form colonies in soft-agar, the Cdc42(F28L,R66A) mutant was transformation-defective. Likewise, the introduction of RhoGDI siRNA into Cdc42(F28L)-transfected cells inhibited their transformation. CONCLUSIONS: Taken together, the results reported here indicate that despite being a negative regulator of Cdc42 activation and GTP hydrolysis, RhoGDI plays an essential role in Cdc42-mediated cellular transformation.  相似文献   

3.
Cell polarization and migration in response to chemokines is essential for proper development of the immune system and activation of immune responses. Recent studies of chemokine signaling have revealed a critical role for PI3-Kinase, which is required for polarized membrane association of pleckstrin homology (PH) domain-containing proteins and activation of Rho family GTPases that are essential for cell polarization and actin reorganization. Additional data argue that tyrosine kinases are also important for chemokine-induced Rac activation. However, how and which kinases participate in these pathways remain unclear. We demonstrate here that the Tec kinases Itk and Rlk play an important role in chemokine signaling in T lymphocytes. Chemokine stimulation induced transient membrane association of Itk and phosphorylation of both Itk and Rlk, and purified T cells from Rlk(-/-)Itk(-/-) mice exhibited defective migration to multiple chemokines in vitro and decreased homing to lymph nodes upon transfer to wt mice. Expression of a dominant-negative Itk impaired SDF-1alpha-induced migration, cell polarization, and activation of Rac and Cdc42. Thus, Tec kinases are critical components of signaling pathways required for actin polarization downstream from both antigen and chemokine receptors in T cells.  相似文献   

4.
A polarity complex of PAR-3, PAR-6 and atypical protein kinase C (aPKC) functions in various cell-polarization events, including neuron specification. The small GTPase Cdc42 binds to PAR-6 and regulates cell polarity. However, little is known about the downstream signals of the Cdc42-PAR protein complex. Here, we found that PAR-3 directly interacted with STEF/Tiam1, which are Rac-specific guanine nucleotide-exchange factors, and that STEF formed a complex with PAR-3-aPKC-PAR-6-Cdc42-GTP. Cdc42 induces lamellipodia in a Rac-dependent manner in N1E-115 neuroblastoma cells. Disruption of Cdc42-PAR-6 or PAR-3-STEF binding inhibited Cdc42-induced lamellipodia but not filopodia. The isolated STEF-binding PAR-3 fragment was sufficient to induce lamellipodia independently of Cdc42 and PAR-6. PAR-3 is required for Cdc42-induced Rac activation, but is not essential for lamellipodia formation itself. In cultured hippocampal neurons, STEF accumulated at the tip of the growing axon and colocalized with PAR-3. The spatio-temporal activation and signalling of Cdc42-PAR-6-PAR-3-STEF/Tiam1-Rac seem to be involved in neurite growth and axon specification. We propose that the PAR-6-PAR-3 complex mediates Cdc42-induced Rac activation by means of STEF/Tiam1, and that this process seems to be required for the establishment of neuronal polarity.  相似文献   

5.
P21-activated kinase 1 (PAK1) is activated by binding to GTP-bound Rho GTPases Cdc42 and Rac via its CRIB domain. Here, we provide evidence that S79 in the CRIB domain of PAK1 is not directly involved in this binding but is crucial for PAK1 activation. S79A mutation reduces the binding affinity of PAK1 for the GTPases and inhibits autophosphorylation and kinase activity of PAK1. Thus, this mutation abrogates the ability of PAK1 to induce changes in cell morphology and motility and to promote malignant transformation of prostate epithelial cells. We also show that growth of the prostate cancer cell line PC3 is inhibited by the treatment of a PAK1-inhibiting peptide comprising 19 amino acids centered on S79, but not by the PAK1 peptide containing the S79A mutation, and that this growth inhibition is correlated with reduced autophosphorylation activity of PAK1. Together, these findings demonstrate a significant role of S79 in PAK1 activation and provide evidence for a novel mechanism of the CRIB-mediated interaction of PAK1 with Cdc42 and Rac.  相似文献   

6.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   

7.
Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170   总被引:27,自引:0,他引:27  
Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.  相似文献   

8.
The small G proteins Cdc42, Rac1, and Rac2 regulate the rearrangements of actin and membrane necessary for Fcgamma receptor-mediated phagocytosis by macrophages. Activated, GTP-bound Cdc42, Rac1, and Rac2 bind to the p21-binding domain (PBD) of PAK1, and this interaction provided a basis for microscopic methods to localize activation of these G proteins inside cells. Fluorescence resonance energy transfer-based stoichiometry of fluorescent chimeras of actin, PBD, Cdc42, Rac1, and Rac2 was used to quantify G protein activation relative to actin movements during phagocytosis of IgG-opsonized erythrocytes. The activation dynamics of endogenous G proteins, localized using yellow fluorescent protein-labeled PBD, was restricted to phagocytic cups, with a prominent spike of activation over an actin-poor region at the base of the cup. Refinements of fluorescence resonance energy transfer stoichiometry allowed calculation of the fractions of activated GTPases in forming phagosomes. Cdc42 activation was restricted to the leading margin of the cell, whereas Rac1 was active throughout the phagocytic cup. During phagosome closure, activation of Rac1 and Rac2 increased uniformly and transiently in the actin-poor region of phagosomal membrane. These distinct roles for Cdc42, Rac1, and Rac2 in the component activities of phagocytosis indicate mechanisms by which their differential regulation coordinates rearrangements of actin and membranes.  相似文献   

9.
Inflammatory disorders of the gastrointestinal tract result in the breakdown of the intestinal epithelial barrier in the form of erosion and ulceration. To reestablish the epithelial barrier, the epithelium must efficiently migrate to reseal wounds. Numerous signaling cascades are involved in the induction and regulation of this complex process. N-formyl peptide receptors comprise a group of Gi-coupled receptors that regulate innate immune responses. Previously, we identified the expression of functional N-formyl peptide receptors in model SK-CO15 intestinal epithelial cells and observed a role for activation of these receptors in regulating cellular invasive behavior. In these studies, we performed formyl peptide receptor-1 (FPR) localization and evaluated its role in regulating intestinal epithelial cell wound closure. Immunolocalization studies using a recently developed specific monoclonal anti-FPR Ab demonstrated its localization along the lateral membrane of crypt epithelial cells in normal human colonic epithelium. In vitro studies using the classical FPR agonist fMLF showed that FPR activation significantly enhances model intestinal epithelial cell restitution and that FPR localized along actin filaments in lamellipodial and filopodial extrusions. The increase in cell migration was associated with activation of PI3K, Rac1, and Cdc42. Pharmacologic inhibition of PI3K activity abrogated the fMLF-induced increase in wound closure and activation of both Rac1 and Cdc42. Inhibition of Rac1 and Cdc42 using pharmacologic inhibitors and dominant negative mutants also inhibited the fMLF-induced increase in cell migration. Taken together, theses results support a novel role for FPR stimulation in enhancing intestinal epithelial cell restitution through PI3K-dependent activation of Rac1 and Cdc42.  相似文献   

10.
11.
12.
RhoG is a member of the Rho family of small GTPases and shares high sequence identity with Rac1 and Cdc42. Previous studies suggested that RhoG mediates its effects through activation of Rac1 and Cdc42. To further understand the mechanism of RhoG signaling, we studied its potential activation pathways, downstream signaling properties, and functional relationship to Rac1 and Cdc42 in vivo. First, we determined that RhoG was regulated by guanine nucleotide exchange factors that also activate Rac and/or Cdc42. Vav2 (which activates RhoA, Rac1, and Cdc42) and to a lesser degree Dbs (which activates RhoA and Cdc42) activated RhoG in vitro. Thus, RhoG may be activated concurrently with Rac1 and Cdc42. Second, some effectors of Rac/Cdc42 (IQGAP2, MLK-3, PLD1), but not others (e.g. PAKs, POSH, WASP, Par-6, IRSp53), interacted with RhoG in a GTP-dependent manner. Third, consistent with this differential interaction with effectors, activated RhoG stimulated some (JNK and Akt) but not other (SRF and NF-kappaB) downstream signaling targets of activated Rac1 and Cdc42. Finally, transient transduction of a tat-tagged Rac1(17N) dominant-negative fusion protein inhibited the induction of lamellipodia by the Rac-specific activator, Tiam1, but not by activated RhoG. Together, these data argue that RhoG function is mediated by signals independent of Rac1 and Cdc42 activation and instead by direct utilization of a subset of common effectors.  相似文献   

13.
To infect host cells, Salmonella utilizes an intricate system to manipulate the actin cytoskeleton and promote bacterial uptake. Proteins injected into the host cell by Salmonella activate the Rho GTPases, Rac1 and Cdc42, to induce actin polymerization. Following uptake, a different set of proteins inactivates Rac1 and Cdc42, returning the cytoskeleton to normal. Although the signaling pathways allowing Salmonella to invade host cells are beginning to be understood, many of the contributing factors remain to be elucidated. IQGAP1 is a multidomain protein that influences numerous cellular functions, including modulation of Rac1/Cdc42 signaling and actin polymerization. Here, we report that IQGAP1 regulates Salmonella invasion. Through its interaction with actin, IQGAP1 co-localizes with Rac1, Cdc42, and actin at sites of bacterial uptake, whereas infection promotes the interaction of IQGAP1 with both Rac1 and Cdc42. Knockdown of IQGAP1 significantly reduces Salmonella invasion and abrogates activation of Cdc42 and Rac1 by Salmonella. Overexpression of IQGAP1 significantly increases the ability of Salmonella to enter host cells and required interaction with both actin and Cdc42/Rac1. Together, these data identify IQGAP1 as a novel regulator of Salmonella invasion.  相似文献   

14.
Ras family small GTPases play a critical role in malignant transformation, and Rho subfamily members contribute significantly to this process. Anchorage-independent growth and the ability to avoid detachment-induced apoptosis (anoikis) are hallmarks of transformed epithelial cells. In this study, we have demonstrated that constitutive activation of Cdc42 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. We showed that activated Cdc42 stimulates the ERK, JNK, and p38 MAPK pathways in suspension condition; however, inhibition of these signaling does not affect Cdc42-stimulated cell survival. However, we demonstrated that inhibition of phosphatidylinositol 3-kinase (PI3K) pathway abolishes the protective effect of Cdc42 on anoikis. Taking advantage of a double regulatory expression system, we also showed that Cdc42-stimulated cell survival in suspension condition is, at least in part, mediated by Rac1. We also provide evidence for a positive feedback loop involving Rac1 and PI3K. In addition, we show that the survival functions of both constitutively active Cdc42 and Rac1 GTPases are abrogated by Latrunculin B, an actin filament-depolymerizing agent, implying an important role for the actin cytoskeleton in mediating survival signaling activated by Cdc42 and Rac1. Together, our results indicate a role for Cdc42 in anchorage-independent survival of epithelial cells. We also propose that this survival function depends on a positive feedback loop involving Rac1 and PI3K.  相似文献   

15.
The Rho-like GTPase, Rac1, induces cytoskeletal rearrangements required for cell migration. Rac activation is regulated through a number of mechanisms, including control of nucleotide exchange and hydrolysis, regulation of subcellular localization or modulation of protein-expression levels. Here, we identify that the small ubiquitin-like modifier (SUMO) E3-ligase, PIAS3, interacts with Rac1 and is required for increased Rac activation and optimal cell migration in response to hepatocyte growth factor (HGF) signalling. We demonstrate that Rac1 can be conjugated to SUMO-1 in response to hepatocyte growth factor treatment and that SUMOylation is enhanced by PIAS3. Furthermore, we identify non-consensus sites within the polybasic region of Rac1 as the main location for SUMO conjugation. We demonstrate that PIAS3-mediated SUMOylation of Rac1 controls the levels of Rac1-GTP and the ability of Rac1 to stimulate lamellipodia, cell migration and invasion. The finding that a Ras superfamily member can be SUMOylated provides an insight into the regulation of these critical mediators of cell behaviour. Our data reveal a role for SUMO in the regulation of cell migration and invasion.  相似文献   

16.
The small GTPase RhoB regulates endocytic trafficking of receptor tyrosine kinases (RTKs) and the non-receptor kinases Src and Akt. While receptor-mediated endocytosis is critical for signaling processes driving cell migration, mechanisms that coordinate endocytosis with the propagation of migratory signals remain relatively poorly understood. In this study, we show that RhoB is essential for activation and trafficking of the key migratory effectors Cdc42 and Rac in mediating the ability of platelet-derived growth factor (PDGF) to stimulate cell movement. Stimulation of the PDGF receptor-β on primary vascular smooth muscle cells (VSMCs) results in RhoB-dependent trafficking of endosome-bound Cdc42 from the perinuclear region to the cell periphery, where the RhoGEF Vav2 and Rac are also recruited to drive formation of circular dorsal and peripheral ruffles necessary for cell migration. Our findings identify a novel RhoB-dependent endosomal trafficking pathway that integrates RTK endocytosis with Cdc42/Rac localization and cell movement.  相似文献   

17.
Adiponectin has anti-atherosclerotic effects through its direct actions on vascular cells. The present study investigates the molecular mechanisms of adiponectin in the migration of endothelial progenitor cells (EPCs) which play an important role in neovascularization and re-endothelization. The phosphorylation of Akt and the activations of Cdc42 and Rac1 were significantly increased by adiponectin. Adiponectin increased the migration activity of EPCs, which was completely inhibited by a PI3-kinase inhibitor. siRNA of Cdc42 or Rac1 completely inhibited the adiponectin-induced migration, but siRNA of Akt had no effects, indicating that adiponectin promotes the migration activities of EPCs mainly through PI3-kinase/Cdc42/Rac1.

Structured summary

MINT-7217629: PAK1 (uniprotkb:Q13153) physically interacts (MI:0914) with CDC42 (uniprotkb:P60953) by pull down (MI:0096)MINT-7217644: PAK1 (uniprotkb:Q13153) physically interacts (MI:0914) with Rac1 (uniprotkb:P63000) by pull down (MI:0096)  相似文献   

18.
Hypoxia-inducible factor 1 (HIF-1) is a key regulator of tumor development. Recently, the tumor microenvironment, with the presence of tumor-associated macrophages (TAMs), has gained considerable interest. The mechanisms of macrophage/TAM migration as well as the role of HIF-1 in macrophages for tumor progression are still under debate. We present evidence that under normoxic conditions, nitric oxide (NO) promotes macrophage migration. The response was impaired in macrophages from leukocyte conditional HIF-1α−/− mice. NO production and cell migration in response to cytokines were attenuated in macrophages from iNOS−/− mice, suggesting that iNOS-derived NO transmits cytokine signaling toward cell migration. We further identified the small GTPases Cdc42 and Rac1 as effectors of the NO–HIF axis to drive macrophage migration by modulating the actin cytoskeleton. Our observations strengthen the role of HIF-1 in macrophages as a target of NO in facilitating functional responses such as migration.  相似文献   

19.
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, have been used successfully in the treatment of hypercholesterolemia for more than a decade. Statins also exhibit overall clinical benefits on cardiovascular diseases independent of their effects on lowering serum cholesterol levels. These beneficial effects of statin therapy are believed to be due, at least in part, to the anti-inflammatory and immunomodulatory roles of statins. Statin treatment reduces the levels of inflammatory markers, decreases the activation and recruitment of immune cells, and delays the progression of atherosclerosis, a chronic inflammatory disease. However, little is known about the direct impact of statins on immune cells, particularly on macrophages. We report that lovastatin, a member of the statin family, effectively induces apoptosis in macrophages. Further investigation of the molecular mechanism has revealed that Rac1 and Cdc42, the small GTPase family members, may play an important role in lovastatin-induced macrophage apoptosis. Moreover, the activation of the JNK pathway may contribute to this event. Our findings provide a better understanding of the molecular basis underlying the anti-inflammatory clinical benefits of statin therapy in cardiovascular diseases.  相似文献   

20.
The involvement of p21-activated kinases (PAKs) in important cellular processes such as regulation of the actin skeleton morphology, transduction of signals controlling gene expression, and execution of programmed cell death has directed attention to the regulation of the activity of these kinases. Here we report that activation of PAK2 by p21 GTPases can be strongly potentiated by cellular tyrosine kinases. PAK2 became tyrosine phosphorylated in its N-terminal regulatory domain, where Y130 was identified as the major phosphoacceptor site. Tyrosine phosphorylation-mediated superactivation of PAK2 could be induced by overexpression of different Src kinases or by inhibiting cellular tyrosine phosphatases with pervanadate and could be blocked by the Src kinase inhibitor PP1 or by mutating the Y130 residue. Analysis of PAK2 mutants activated by amino acid changes in the autoinhibitory domain or the catalytic domain indicated that GTPase-induced conformational changes, rather than catalytic activation per se, rendered PAK2 a target for tyrosine phosphorylation. Thus, PAK activation represents a potentially important point of convergence of tyrosine kinase- and p21 GTPase-dependent signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号