首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The exocellular DD-carboxypeptidase-endopeptidase of Streptomyces albus G was purified to protein homogeneity and compared with the exocellular DD-carboxypeptidases-transpeptidases of Streptomyces R61 and Actinomadura R39. The S. albus G enzyme, as it is isolated, occurs in two forms. Enzyme I (30% of the total amount) and enzyme II (70% of the total amount) are identical in all respects, except that, by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate, enzyme I has an apparent mol. wt. (9000) that is half of that found by molecular-sieve filtration under non-denaturing conditions. Irrespective of the technique used, enzyme II has an apparent mol. wt. of about 18500.  相似文献   

2.
3.
The exocellular beta-lactamase of Streptomyces albus G has been purified to near protein homogeneity. It consists of one single polypeptide chain of mol.wt. 30 000-31 000, has a rather low isoelectric point (at pH 6.0) and contains less lysine (2.1%) and more half-cystine residues than most beta-lactamases from other Gram-positive bacteria. Penicillins are much better substrates than delta 3-cephalosporins; the catalytic-centre activity of good penicillin substrates is 333-500 s-1. The exocellular, mol.wt. 17 000 DD-carboxypeptidase of S. albus G [previously purified to protein homogeneity; Duez, Frère, Geurts, Ghuysen, Dierickx & Delcambe (1978) Biochem. J. 175, 793-800] behaves as an exceedingly poor beta-lactamase, hydrolysing benzylpenicillin into benzylpenicilloate 5 x 10(-6)-fold less rapidly than does the exocellular beta-lactamase. To all appearances, the beta-lactamase has no bivalent cation requirement whereas, as shown elsewhere [Dideberg, Charlier, Dupont, Vermeire, Frère & Ghuysen (1980) FEBS Lett. 117, 212-214, and Dideberg, Joris, Frère, Ghuysen, Weber, Robaye, Delbrouck & Roelands (1980) FEBS Lett. 117, 215-218], the DD-carboxypeptidase possesses one essential Zn2+ ion per molecule. Peptide 'mapping' and immunological studies suggest that the two Streptomyces enzymes probably have very different structural and mechanistic properties.  相似文献   

4.
The exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R39 is inhibited by beta-lactam antibiotics according to the same general scheme of reaction as the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. However, the values for the kinetic constants involved in the reaction are very different for the two enzymes and provide an explanation for the observation that the R39 enzyme is more sensitive to beta-lactam antibiotics than the R61 enzyme. Further, particular beta-lactams influence the kinetic constants to different extents depending on the source of the enzyme, so that a physical basis for the spectrum of antibiotic activity against particular enzyme systems is provided.  相似文献   

5.
The simplest model for the interaction between the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61 and beta-lactam antibiotics involves the three following steps: (a) the formation of a reversible equimolar enzyme - antibiotic complex; (b) the irreversible transformation of this complex into a modified enzyme - antibiotic complex; and (c) the breakdown of this latter complex and the concomitant release of a regenerated enzyme and a modified antibiotic molecule. The dissociation constant for step 1 and the rate constants for steps 2 and 3 were measured with various beta-lactam antibiotics. With antibiotic such as benzylpenicillin, which behaves as a good 'substrate', steps 1 and 2 occur at enzymic velocities, whereas step 3 occurs at a very low velocity and hence is responsible for the low efficiency of the overall process.  相似文献   

6.
The reactions of beta-lactamases of Actinomadura R39 and Streptomyces albus G with clavulanate proceed along branched pathways. Both enzymes perform the hydrolysis of this beta-lactam with rather high efficiencies (kcat. = 18s-1 and 52s-1 respectively). If large clavulanate/enzyme ratios are used, complete inactivation of the enzymes is observed. At lower ratios, inactivation is only partial. Irreversible inactivation occurs after 400 and 20000 turnovers for the A. R39 and S. albus G enzymes respectively. With the A. R39 beta-lactamase, a transiently inhibited complex is also formed that remains undetectable with the S. albus G beta-lactamase. Kinetic models are presented and studied for the interaction between clavulanate and both enzymes. A tentative general reaction scheme is also discussed.  相似文献   

7.
The beta-lactamases of Streptomyces albus G and Actinomadura R39 are inactivated by beta-iodopenicillanate. However, in contrast with the beta-lactamase I from Bacillus cereus, they also efficiently catalyse the hydrolysis of the inactivator; with the S. albus G enzyme, kcat. is larger than 25s-1 and the number of turnovers before inactivation is 515. With the A. R39 enzyme, kcat. is larger than 50s-1 and the number of turnovers before inactivation is 80. After hydrolysis of the beta-lactam amide bond, the product rearranges into 2.3-dihydro-2,2-dimethyl-1,4-thiazine-3,6-dicarboxylate, which exhibits an absorption maximum at 305 nm.  相似文献   

8.
The dd-carboxypeptidase-endopeptidase of low penicillin sensitivity that is excreted by Streptomyces albus G has been crystallized from a polyethylene glycol (Mr 6000 to 7500) solution at pH 8.0. X-ray examination of the prismatic crystals shows that the space group is P21 with unit cell dimensions a = 51.1 A?, b = 49.7 A?, c = 38.7 A?, β = 100.6 ° and one molecule in the asymmetric unit. A crystal suspension made in 50 mm-Tris · HCl buffer (pH 8.0) supplemented with 5 mm-MgCl2 and 16% (wv) polyethylene glycol exhibits enzyme activity on the substrate Ac2-l-Lys-d-Ala-d-Ala.  相似文献   

9.
6-Aminopenicillanic acid, 7-aminocephalosporanic acid, mecillinam and quinacillin have varying substrate activities for both the R39 beta-lactamase (excreted by Actinomadura R39) and the G beta-lactamase (excreted by Streptomyces albus G). Cefoxitin and quinacillin sulphone are not recognized by the G beta-lactamase and are weak inactivators of the R39 beta-lactamase. N-Formimidoylthienamycin is a poor substrate for the G beta-lactamase and a potent inactivator of the R39 beta-lactamase. The high value of the bimolecular rate constant for enzyme inactivation is mainly due to a very low dissociation constant (1 microM). Clavulanate is an inactivator of both G and R39 beta-lactamases. The reaction with this latter enzyme is a branched pathway where normal turnover and permanent enzyme inactivation occur concomitantly. Between 28 and 43 molecules of clavulanate are hydrolysed before one of them has the opportunity to inactivate one molecule of enzyme.  相似文献   

10.
A new restriction endonuclease from Streptomyces albus G.   总被引:10,自引:0,他引:10  
A restriction endonuclease, SalI, has been partially purified from Streptomyces albus G. This enzyme cleaves adenovirus-2 DNA at three sites, bacteriophage λ DNA at two sites, but does not cleave simian virus 40 DNA or φX174 DNA. It recognizes the sequence
and cuts at the sites indicated by the arrows. An endonuclease (XamI) with similar specificity has also been isolated from Xanthomonas amaranthicola.  相似文献   

11.
12.
The binding properties of 25 beta-lactam antibiotics to Bacillus megaterium membranes have been studied. The affinities of the antibiotics for the penicillin-binding proteins (PBPs) are also reported. We found that PBP 4 has the highest affinity for nearly all the antibiotics studied whereas PBP 5 has the lowest affinity. Both PBP 4 and PBP 5 appear to be dispensable for the maintenance of bacterial growth and survival and appear to be DD-carboxypeptidases. Only the beta-lactam cefmetazol bound preferentially to PBP 5 and has been used to study the inhibition of DD-carboxypeptidase. Comparative studies with beta-lactam that simultaneously result in (a) binding to PBPs 1 and 3, (b) inhibition of cell growth and (c) lysis, stressed the importance of PBPs 1 and 3 for cell growth and survival.  相似文献   

13.
The SalI (SalGI) restriction-modification system of Streptomyces albus G   总被引:3,自引:0,他引:3  
M R Rodicio  K F Chater 《Gene》1988,74(1):39-42
The salIR and salM genes of Streptomyces albus G specify the SalGI (SalI) restriction enzyme and its cognate methyltransferase, respectively. These enzymes are responsible for restriction and modification of bacteriophages. Some phages carry genes that interfere with SalI-specific modification. The sal genes have been cloned in a Streptomyces host-vector system. Use of the cloned DNA as a hybridization probe reveals that sal mutants frequently arise from transposition of a DNA segment of approx. 1 kb into the sal genes. Some, but not all, other bacteria that produce SalGI isoschizomers contain nucleotide sequences that hybridize with sal DNA.  相似文献   

14.
The bacteriophage Pa16, isolated from soil on Streptomyces albus G, was restricted when transferred from an alternative host back to S. albus G. Extracted unmodified Pa16 deoxyribonucleic acid was cleaved at a single site by a cell-free extract of S. albus G. Fractions cleaving Pal6 deoxyribonucleic acid contained the endonuclease SalI first described by J. Arrand, P. Myers, and R. J. Roberts (unpublished data). A mutant of S. albus G was isolated which was defective in both restriction and modification of Pal6. This mutant lacked SalI activity. It is concluded that SalI is the agent of restriction of Pal6 by S. albus G.  相似文献   

15.
The interaction of beta-lactams with the purified mitochondrial carnitine/acylcarnitine transporter reconstituted in liposomes has been studied. Cefonicid, cefazolin, cephalothin, ampicillin, piperacillin externally added to the proteoliposomes, inhibited the carnitine/carnitine antiport catalysed by the reconstituted transporter. The most effective inhibitors were cefonicid and ampicillin with IC50 of 6.8 and 7.6mM, respectively. The other inhibitors exhibited IC50 values above 36 mM. Kinetic analysis performed with cefonicid and ampicillin revealed that the inhibition is completely competitive, i.e., the inhibitors interact with the substrate binding site. The Ki of the transporter is 4.9 mM for cefonicid and 9.9 mM for ampicillin. Cefonicid inhibited the transporter also on its internal side. The IC50 was 12.9 mM indicating that the inhibition was less pronounced than on the external side. Ampicillin and the other inhibitors were much less effective on the internal side. The beta-lactams were not transported by the carnitine/acylcarnitine transporter. Cephalosporins, and at much lower extent penicillins, caused irreversible inhibition of the transporter after prolonged time of incubation. The most effective among the tested antibiotics was cefonicid with IC50 of 0.12 mM after 60 h of incubation. The possible in vivo implications of the interaction of the beta-lactam antibiotics with the transporter are discussed.  相似文献   

16.
17.
The crystal structure of the beta-lactamase of Streptomyces albus G has been solved at 0.3 nm resolution by X-ray-diffraction methods. The enzyme is a typical two-domain protein. One domain consists of five alpha-helices, and the other is five-stranded beta-sheet with alpha-helices on both sides of the sheet. The active-site serine residue (Ser-48) is within a cleft located between the two domains.  相似文献   

18.
19.
Streptomyces albus G mutants (at least 12 of which were independent) defective in SalGI-mediated restriction (R-) were isolated after mutagenesis. Some of them lacked detectable SalGI activity in cell-free extracts. Some were also partially or completely defective in SalFI-associated modification (M-). Loss of restriction rendered S. albus G sensitive to many phages to which it was normally totally resistant. DNA from one such phage had many SalGI target sites (mean, one site per 1.35 kilobases). A mutant was isolated which was heat-sensitive for growth, apparently because it was restriction-proficient but temperature-sensitive for modification. At a rather high frequency, this mutant generated spontaneous heat-tolerant derivatives which were nearly all R-. Such R- mutants were always M- rather than being temperature-sensitive for modification. In a limited genetic analysis, the determinants of restriction and modification did not recombine with each other, and since there was no reassortment of these phenotypes among the parental output of crosses it appeared that the determinants were located close together on the chromosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号