首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventy‐five isolates of Fusarium oxysporum f.sp. cepae, the causal agent of basal plate rot on onion, were obtained from seven provinces of Turkey. The isolates were characterized by vegetative compatibility grouping (VCGs) and restriction fragment length polymorphism (RFLP) analysis of the nuclear ribosomal DNA intergenic spacer region (IGS). Forty‐eight vegetative compatibility groups were found, each containing a single isolate. Only one isolate formed strong heterokaryons with the reference isolates of VCG 0423. Five isolates were heterokaryon self‐incompatible. Restriction fragment analysis with six different enzymes revealed 13 IGS types among 75 F. oxysporum isolates from Turkey as well as 16 reference isolates from Colorado, USA. The majority of single‐member VCGs produced identical RFLP banding patterns with minor deviations, considerably different from those of the reference VCG isolates. These results suggested that isolates of F. oxysporum f.sp. cepae in Turkey derived from distinct clonal lineages and mutations at one or more vegetative compatibility loci restrict heterokaryon formation.  相似文献   

2.
The utility of fatty acid methyl ester (FAME) profiles for characterization and differentiation of isolates of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was investigated. Two fatty acid analysis protocols of the normal (MIDI) and a modified MIDI method were used for their utility. Only the modified MIDI method allowed a clear differentiation between F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicislycopersici. FAME profiles using the modified MIDI method gave the most consistent and reproducible analyzed fatty acid data. Evaluation of the FAME profiles based on cluster analysis and principal-component analysis revealed that FAME profiles from tested isolates were correlated with the same vegetative compatibility groups (VCGs) compared to the same races in F. oxysporum f. sp. lycopersici. Results indicated that FAME profiles could be an additional tool useful for characterizing isolates and forma species of F. oxysporum obtained from tomato.  相似文献   

3.
D. Cafri    J. Katan    T. Katan 《Journal of Phytopathology》2005,153(10):615-622
The population structure of Fusarium oxysporum f. sp. cucumerinum was studied using the vegetative compatibility grouping (VCG) approach. All 37 of the examined isolates from Israel were assigned to VCG 0180, the major VCG found in North America and the Mediterranean region. Approximately two‐thirds of the tested isolates were pathogenic to both cucumber and melon, but cumulatively they were more aggressive on cucumber, their major host, than on melon. Disease symptoms on melon plants were less destructive and often expressed as growth retardation. Melon cultivars differing in Fom genes for resistance to F. oxysporum f. sp. melonis were inoculated with three isolates of F. oxysporum f. sp. cucumerinum. Results showed that Fom genes do not confer resistance to F. oxysporum f. sp. cucumerinum, although different horticultural types may respond differently to this pathogen. The reciprocal inoculation of F. oxysporum f. sp. melonis on cucumber, using four physiological races, did not result in disease symptoms or growth retardation. It is concluded that cucumerinum and melonis should remain two distinct formae speciales.  相似文献   

4.
Races and vegetative compatibility groups (VCGs) in Greek isolates of Fusarium oxysporum f. sp. melonis(Fom) were characterized. Three races (0, 2 and 1–2) among 12 isolates tested and two VCGs among 19 isolates tested, were identified. Race 1–2 was the most common and race 1 was not detected. One widespread VCG corresponded to a VCG previously reported from Israel (coded 0138), and included seven isolates of races 0 and 1–2. The other VCG, which was unclassified, included four isolates of races 0, 2 and 1–2. The latter VCG was detected only in a specific melon‐growing location of Evros. The remaining eight isolates tested for VCG did not show positive reactions with other isolates, with each other or with the testers of VCGs 0135 or 0138, although they produced complementary mutants. Using two inoculation methods, the local cv. ‘Golden Head’ was found susceptible to all known Fom races, and especially to race 1–2. These results show the presence of more than one VCG and the widespread distribution of the race 1–2, in Greece.  相似文献   

5.
Genetic variation among 11 isolates of Fusarium oxysporum f.sp. cubense (FOC) was analysed by random amplification of polymorphic DNA using the polymerase chain reaction (RAPD-PCR). The isolates represented three of the four FOC races and the seven vegetative compatibility groups (VCGs) known to occur in Australia. Isolates of F. oxysporum f.sp. cubense were also compared to isolates of F. oxysporum f.sp. gladioli, F. oxysporum f.sp. zingiberi, F. oxysporum f.sp. lycopersici, F. moniliforme, Aspergillus niger and Colletotrichum gloeosporioides. DNA was extracted from fungal mycelium and amplified by RAPD-PCR using one of two single random 10-mer primers; the primer sequences were chosen arbitrarily. The RAPD-PCR products were separated by polyacrylamide gel electrophoresis producing a characteristic banding pattern for each isolate. The genetic relatedness of the F. oxysporum f.sp. cubense isolates was determined by comparing the banding patterns generated by RAPD-PCR. This RAPD-PCR analysis revealed variation at all five levels of possible genetic relatedness examined. F. oxysporum f.sp. cubense could very easily be distinguished from the other fungi, and the three races and five VCGs of F. oxysporum f.sp. cubense could also be differentiated. Within F. oxysporum f.sp. cubense, each isolate was scored for the presence or absence of each band (50 different bands were produced for primer SS01 and 59 different bands for primer RC09) and these data were clustered using the UPGMA method (unweighted pair-group method, arithmetic average). UPGMA cluster analysis of the data generated by primer SS01 revealed two distinct clusters. One cluster contained race 4 isolates (VCGs 0120, 0129 and 01211) and the other cluster contained both race 1 (VCGs 0124, 0124/5 and 0125) and race 2 isolates (VCG 0128). Similar results were obtained with primer RC09. The banding patterns for each isolate were reproducible between experiments. These results indicated that RAPD-PCR was a useful method for analysing genetic variation within F. oxysporum f.sp. cubense. Some of the advantages of this technique were that it was rapid, no sequence data were required to design the primers and no radioisotopes were required.  相似文献   

6.
Root and basal rot of common onion (Allium cepae L.) caused by Fusarium oxysporum f. sp. cepae is one of the most important diseases causing tremendous losses in onion‐growing areas worldwide. In this study, random amplified polymorphic DNA (RAPD), intersimple sequence repeats (ISSR) and virulence studies were conducted to analyse 26 F. oxysporum f. sp. cepae isolates obtained from the main onion‐growing regions of Iran, including Fars, Azerbaijan and Isfahan states. Cluster analysis using UPGMA method for both RAPD and ISSR markers revealed no clear grouping of the isolates obtained from different geographical regions, and the isolates were observed to derive probably from the same clonal lineage. Pathogenicity test indicated that all F. oxysporum f. sp. cepae isolates were pathogenic on onion; however, virulence variability was observed among the isolates. The grouping based on virulence variability was not correlated with the results of RAPD and ISSR analyses.  相似文献   

7.
Fusarium wilt is an endemic disease in El Barco de Avila (Castilla y León, west-central Spain), where high-quality common bean cultivars have been cultured for the last century. We used intergenic spacer (IGS) region polymorphism of ribosomal DNA, electrophoretic karyotype patterns, and vegetative compatibility and pathogenicity analyses to assess the genetic diversity within Fusarium oxysporum isolates recovered from common bean plants growing in fields around El Barco de Avila. Ninety-six vegetative compatibility groups (VCGs) were found among 128 isolates analyzed; most of these VCGs contained only a single isolate. The strains belonging to pathogenic VCGs and the most abundant nonpathogenic VCGs were further examined for polymorphisms in the IGS region and electrophoretic karyotype patterns. Isolates belonging to the same VCG exhibited the same IGS haplotype and very similar electrophoretic karyotype patterns. These findings are consistent with the hypothesis that VCGs represent clonal lineages that rarely, if ever, reproduce sexually. The F. oxysporum f. sp. phaseoli strains recovered had the same IGS haplotype and similar electrophoretic karyotype patterns, different from those found for F. oxysporum f. sp. phaseoli from the Americas, and were assigned to three new VCGs (VCGs 0166, 0167, and 0168). Based on our results, we do not consider the strains belonging to F. oxysporum f. sp. phaseoli to be a monophyletic group within F. oxysporum, as there is no correlation between pathogenicity and VCG, IGS restriction fragment length polymorphism, or electrophoretic karyotype.  相似文献   

8.
The enzymatic activity and the biocontrol ability of two new isolates of Trichoderma spp. (T-68 and Gh-2) were compared in laboratory and glasshouse experiments with a previously studied T. harzianum strain (T-35). In dual culture tests with Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. vasinfectum, isolates T-68 and Gh-2 overgrew the colonies of Fusarium, whereas T-35 failed to parasitize both wilt pathogens. Under glasshouse conditions, the three isolates of Trichoderma were effective in controlling Fusarium wilt of cotton but only T-35 was effective against F. oxysporum f. sp. melonis on muskmelon. When the three Trichoderma isolates were grown on liquid media containing laminarin, colloidal chitin or F. oxysporum f. sp. melonis cell walls as sole carbon sources, maximum β-1,3-glucanase and chitinase specific activity in the culture filtrates of all fungi was reached after 72h of incubation. When culture filtrates of the three Trichoderma isolates were incubated with freeze-dried mycelium of F. oxysporum f. sp. melonis or F. oxysporum f. sp. vasinfectum, different concentrations of glucose and N-acetyl-D-glucosamine were released. Overall no correlation was found between enzymatic activity and the biocontrol capability against Fusarium wilt on muskmelon and cotton.  相似文献   

9.
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is an important disease of tomato. Pathogenicity and vegetative compatibility tests, although reliable, are laborious for the identification of FOL isolates and cannot efficiently quantify population densities of FOL in the soil. The objective of this study was to develop a rapid, sensitive and quantitative real‐time polymerase chain reaction (PCR) assay for detecting and quantifying FOL in soil. An inexpensive and relatively simple method for soil DNA extraction and purification was developed based on bead‐beating and a silica‐based DNA‐binding method. A TaqMan probe and PCR primers were designed using the DNA sequence of the species‐specific virulence gene SIX1, which is only present in isolates of FOL, not in isolates of other formae speciales or non‐pathogenic isolates of F. oxysporum. The real‐time PCR assay successfully amplified isolates of three races of FOL used in this study and quantified FOL DNA in soils, with a detection limit of 0.44 pg of genomic DNA of FOL in 20 μl of the real‐time PCR. A spiking test performed by adding different concentrations of conidia to soil showed a significant linear relationship between the amount of genomic DNA of FOL detected by the real‐time PCR assay and the concentration of conidia added. In addition, the real‐time PCR assay revealed a significant quadratic regression for a glasshouse experiment between disease severity and DNA concentration of FOL. The soil DNA extraction method and real‐time PCR assay developed in this study could be used to determine population densities of FOL in soil, develop threshold models to predict Fusarium wilt severity, identify high‐risk fields and measure the impact of cultural practices on FOL populations in soils.  相似文献   

10.
Fusarium crown and root rot of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. radicis‐lycopersici is a new devastative disease of tomato greenhouse crops in Tunisia. Nothing is known neither about the population of this pathogen in this region, nor about the population of F. oxysporum f. sp. lycopersici the causal agent of Fusarium wilt of tomato. In order to examine the genetic relatedness among the F. oxysporum isolates by intergenic spacer restriction fragment length polymorphism (IGS‐RFLP) analysis and to elucidate the origin of the formae specialesradicis‐lycopersici in Tunisia by looking for genetic similarity of Tunisians isolates with isolates from a foreign source, the genetic diversity among F. oxysporum f. sp. radicis‐lycopersici and F. oxysporum f. sp. lycopersici populations was investigated. A total of 62 isolates of F. oxysporum, obtained from symptomless tomato plants, were characterized using IGS typing and pathogenicity tests on tomato plants. All Fusarium isolates were highly pathogenic on tomato. Fusarium oxysporum f. sp. radicis‐lycopersici isolates were separated into five IGS types. From the 53 F. oxysporum f. sp. radicis‐lycopersici isolates, 34 isolates have the same IGS types (IGS type 25), and the remaining 19 isolates were distributed into four IGS types. However, the only nine isolates of F. oxysporum f. sp. lycopersici have six different IGS types. This difference of diversity between the two formae speciales suggests that F. oxysporum f. sp. radicis‐lycopersici isolates have a foreign origin and may have been accidentally introduced into Tunisia.  相似文献   

11.
Fusarium oxysporum isolates, pathogenic on Paris daisy (Argyranthemum frutescens), were classified by vegetative compatibility grouping analysis. They were compared with isolates of the formae speciales chrysanthemi and tracheiphilum, and with f. sp. dianthi as a genetically distant control. The results show the uniformity of the pathogenic isolates from Paris daisy, except for one which was of a different geographic origin. They were classified as a new VC group (0052). We report also the efficacy of different media in obtaining nit mutants.  相似文献   

12.
Vegetative compatibility among three isolates of Fusarium oxysporum f. sp. lupini and two isolates of F. oxysporum var. redolens from diseased lupins was investigated. Pairings between five mutants originated from each isolate revealed two compatibility groups. The first VCG comprised race 1 of F. oxysporum f. sp. lupini and one isolate of F. oxysporum var. redolens; the second VCG comprised race 2 of F. oxysporum f. sp. lupini and two isolates of F. oxysporum var. redolens. Heterokaryon formation was observed in many pairings involving mutants of both taxa. These findings provide evidence of the conspecificity of these two taxa and they support Gordon 's classification (1952) according to which F. redolens is actually F. oxysporum.  相似文献   

13.
Wilt of Psidium guajava L., incited by Fusarium oxysporum f. sp. psidii and Fusarium solani is a serious soil borne disease of guava in India. Forty-two isolates, each of F. oxysporum f. sp. psidii (Fop) and F. solani (Fs), collected from different agro climatic zones of India showing pathogenicity were subjected to estimate their virulence factor in terms of analysis using virulent gene-related microsatellite loci. The erratic spread and occurrence of guava wilt in different areas may be due to variable aggressiveness or virulence of different pathogenic isolates in the soil. Out of 10 virulent gene locus related microsatellite markers ofFusarium spp., only six marker viz. Xyl, KHS1, PelA1, PG6/7, CHS1/2 and FMK1/MAPK1 were successfully amplified. This indicates that all the tested Fusarium sp. isolates of guava are having virulence gene in their genome. Microsatellite marker for virulence factor genes of Xyl loci was amplified in both Fop and Fs isolates. Product size of 281 bps was exactly amplified with a single banding pattern in all the isolates of Fop and Fs. It has been observed that other five microsatellite marker for virulence factor genes such as KHS1, PelA1, PG6/7, CHS1/2 and FMK1/MAPK1 were amplified with specific band pattern. PG6/7, CHS1/2 and FMK1/MAPK1 were only amplified in Fop isolates with a product size of 765 bps, 1566 bps; 1010 bps and 1244 bps. PelA1 and KHS1were amplified only in Fs isolates with the product size of 586 bps; 1359 bps, respectively. The results indicate that virulence factor genes are in response to produce wilt disease like symptoms in guava plants and also having pathogenic gene-related locus.  相似文献   

14.
A total of 13 representative isolates of Fusarium oxysporum f. sp. melonis (FOM) from Iran, USA and France, eight isolates of seven formae speciales from Iran and one isolate of F. oxysporum f. sp. niveum from the USA were compared based on isozyme analysis and soluble mycelial protein pattern. Isozyme analyses of alkaline phosphatase (ALP), catalase (CAT), esterase (EST), malate dehydrogenase (MDH), superoxide dismutase (SOD) and xanthine dehydrogenase (XDH) revealed polymorphism among the F. oxysporum isolates in which 22 electrophoretic phenotypes (EP) were determined. At least 10 putative loci for these six enzymes were detected and they were all polymorphic. Maximum genetic diversity was observed in CAT, EST and XDH loci. Using UPGMA, the 22 isolates were separated into three main groups with one of the groups divided into two subgroups. Group I included isolates belonging to five formae speciales from Iran, whereas group II that included FOM isolates from both Iran and the USA was divided into two subgroups each containing the vast majority of the respective isolates from either country. Group III constituted FOM isolates from France and one pathogenic isolate on pepper from Iran. FOM isolates representing five different geographical regions from Iran belonged to two different races of 1 and 1,2Y and one vegetative compatibility group (VCG)0134 and thus were genetically homologous. Isozyme polymorphism in these isolates was highly correlated with VCG and geographical origins and to a lesser extent with races. Variations in soluble protein profile in FOM isolates were correlated with genetic distances determined in isozyme analysis. This study suggests that isozyme analysis could be a useful tool for identifying genetic diversity not only in FOM but also several formae speciales of F. oxysporum.  相似文献   

15.
Thirteen species of weed plants were collected between May and September in 2010 and 2011 from eggplant fields representing 11 distinct locations covering a wide geographical area of Turkey. Weeds are potential hosts of many plant pathogens and may not exhibit disease symptoms when colonized. Fusarium spp. were isolated from five monocotyledonous species and eight dicotyledonous species. A total of 212 isolates recovered from weeds were assigned to eight Fusarium species on the basis of morphological characteristics. F. oxysporum was the most frequently isolated species (29.7%), followed by F. solani (19.8%), F. graminearum (13.7%), F. verticillioides (12.7%), F.equiseti (9.9%), F. avenacearum (8.0%), F. proliferatum (3.8%) and F. subglutinans (2.4%). The F. oxysporum isolates from different weed hosts were characterized by means of pathogenicity and vegetative compatibility grouping (VCG) tests. Among these, 29 isolates were found to be pathogenic to eggplant cv. Kemer and re‐isolated as Fusarium oxysporum Schlecht. f. sp. melongenae (Fomg) as evidenced. These isolates from weed hosts were assigned to VCG 0320. This study is the first report of Fomg isolated from weeds in eggplant fields in Turkey. None of the weed species tested showed symptoms of wilting in pot experiments, and F. oxysporum was isolated with greater frequency from all inoculated weeds. The results of this study indicate that several weed plants may serve as alternative sources of inoculum for Fomg, during the growing season.  相似文献   

16.
《Experimental mycology》1995,19(2):120-128
Appel, D. J., and Gordon, T. R. 1995. Intraspecific variation within populations of Fusarium oxysporum based on RFLP analysis of the intergenic spacer region of the rDNA. Experimental Mycology 19, 120-128. Fifty-six isolates of Fusarium oxysporum, including F. oxysporum f. sp. melonis and nonpathogenic strains, were chosen from a larger collection to represent diversity in vegetative compatibility groups (VCGs), mitochondrial DNA (mtDNA) haplotype, geographic distribution, and virulence. Using PCR, a 2.6-kb fragment including the intergenic spacer (IGS) region of the ribosomal DNA was amplified from each isolate. The enzymes EcoRI, Sau 3A, Cfo1, and Ava1I, cut this fragment differentially, revealing 5, 6, 6, and 7 patterns, respectively. Among the 56 isolates, a total of 13 unique IGS haplotypes was identified. Among most F. o. melonis isolates. IGS haplotype correlated with VCG and mtDNA haplotype, but did not differentiate among races. However, a race 1 isolate found in VCG 0131 shared virulence, mtDNA, and IGS haplotypes characteristic of VCG 0134; this isolate may represent a conversion in VCG from 0134 to 0131. Four nonpathogens shared the pathogen vegetative compatibility phenotypes. One race 1,2 isolate associated with VCG 0134 shared both IGS haplotype and VCG with a nonpathogen, but these isolates did not share the same mtDNA haplotype. Another nonpathogenic isolate shared mtDNA and IGS haplotypes with pathogen group 0131 and may simply be an avirulent mutant of a pathogenic strain. For the other two nonpathogenic isolates, vegetative compatibility indicated a close relationship to the pathogen, but differences in both mtDNA and IGS haplotype suggest otherwise. Overall, the IGS haplotype was more variable among the nonpathogenic F. oxysporum VCGs among which 12 of the 13 IGS haplotypes were found. Nonpathogenic isolates that shared a common mtDNA haplotype, but were associated with different VCGs, often had different IGS haplotypes.  相似文献   

17.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

18.
Fusarium oxysporum f. sp. cubense (Foc) is responsible for fusarium wilt of bananas. The pathogen consists of several variants that are divided into three races and 21 vegetative compatibility groups (VCGs). Several DNA-based techniques have previously been used to analyse the worldwide population of Foc, sometimes yielding results that were not always consistent. In this study, the high-resolution genotyping method of AFLP is introduced as a potentially effective molecular tool to investigate diversity in Foc at a genome-wide level. The population selected for this study included Foc isolates representing different VCGs and races, isolates of F. oxysporum f. sp. dianthi, a putatively non-pathogenic biological control strain F. oxysporum (Fo47), and F. circinatum. High-throughput AFLP analysis was attained using five different infrared dye-labelled primer combinations using a two-dye model 4200s LI-COR automated DNA analyser. An average of approx. 100 polymorphic loci were scored for each primer pair using the SAGAMX automated AFLP analysis software. Data generated from five primer pair combinations were combined and subjected to distance analysis, which included the use of neighbour-joining and a bootstrap of 1000 replicates. A tree inferred from AFLP distance analysis revealed the polyphyletic nature of the Foc isolates, and seven genotypic groups could be identified. The results indicate that AFLP is a powerful tool to perform detailed analysis of genetic diversity in the banana pathogen Foc.  相似文献   

19.
Pathogenicity tests with 103 isolates of Fusarium oxysporum from crucifers worldwide were conducted using a standard set of six differential crucifer cultivars. Based on their reaction to the standard differentials, all isolates could be grouped into the five major pathotypes in the three formae speciales, f. sp. conglutinans. f. sp. raphani and f. sp. matthioli. When two additional crucifers, Brassica nigra and B. campestris were added to the differe, ntial set, and the reactions of the host differentials were analyzed, an increased range of virulence profiles was observed, implying the existence of more virulence factors in the F. oxysporum population. An isolate from the U.S.S.R., was identified with virulence capable of overcoming dominant monogenic “type A” resistance in Brassica oleracea suggestive of a potentially new location for this pathotype.  相似文献   

20.
Wilt of Psidium guajava L., incited by Fusarium oxysporum f. sp. psidii and Fusarium solani is a serious soil-borne disease of guava in India. Forty-two isolates each of F. oxysporum f. sp. psidii (Fop) and F. solani (Fs) collected from different agro climatic zones of India showing pathogenicity were subjected to estimate the genetic and molecular characterisation in terms of analysis of microsatellite marker studies. Out of eight microsatellite markers, only four microsatellite markers, viz. MB 13, MB 17, RE 102 and AY212027 were amplified with single band pattern showing the character of identical marker for molecular characterisation and genetic identification. Microsatellite marker MB 13 was amplified in F. oxysporum f. sp. psidii and F. solani isolates. Product size of 296 bps and 1018 bps were exactly amplified with a single banding pattern in all the isolates of F. oxysporum f. sp. psidii and F. solani, respectively. Microsatellite markers, viz. MB 17, RE 102 and AY212027 were also exactly amplified with a single banding pattern. MB 17 was amplified in F. oxysporum f. sp. psidii isolates with a product size of 300 bp. RE 102 and AY212027 were amplified in F. solani isolates with the product size of 153 bp and 300 bp, respectively. Therefore, amplified microsatellite marker may be used as identifying DNA marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号