首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi W  Liu J  Huang Y  Qiao L 《Journal of virology》2001,75(21):10139-10148
Intestinal mucosa is a portal for many infectious pathogens. Systemic immunization, in general, does not induce a cytotoxic T-lymphocyte (CTL) response at the mucosal surface. Because papillomavirus (PV) naturally infects mucosa and skin, we determined whether PV pseudovirus, i.e., PV-like particles in which unrelated DNA plasmids are packaged, could generate specific mucosal immunity. We found that the pseudovirus that encoded the lymphocytic choriomeningitis virus gp33 epitope induced a stronger CTL response than a DNA vaccine (plasmid) encoding the same epitope given systemically. The virus-like particles that were used to make the pseudoviruses provided an adjuvant effect for induction of CTLs by the DNA vaccine. The PV pseudovirus pseudoinfected mucosal and systemic lymphoid tissues when administered orally. Oral immunization with the pseudovirus encoding human PV type 16 mutant E7 induced mucosal and systemic CTL responses. In comparison, a DNA vaccine encoding E7, when given orally, did not induce a CTL response in intestinal mucosal lymphoid tissue. Further, oral immunization with the human PV pseudovirus encoding E7 protected mice against mucosal challenge with an E7-expressing bovine PV pseudovirus. Thus, PV pseudovirus can be used as a novel vaccine to induce mucosal and systemic CTL responses.  相似文献   

2.
Respiratory syncytial virus (RSV) infection is a major cause of morbidity in childhood worldwide. The first human RSV-specific cytotoxic T-lymphocyte epitope to be defined is described. This HLA B7-restricted epitope in nucleoprotein (NP) was detectable in four healthy, B7-positive adult subjects using B7-RSV-NP tetrameric complexes to stain CD8(+) T cells.  相似文献   

3.
Recent studies have shown that tumor necrosis factor alpha (TNF-alpha) plays critical roles in not only viral clearance but also lymphoid tissue development and stem cell differentiation. In this study, we attempted to induce hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) by immunization of TNF-alpha knockout (TNF-alpha(-/-)) mice with HBsAg-encoding plasmid DNA. An immunization with the HBV plasmid failed to induce CTL responses in TNF-alpha(-/-) mice, although CTLs were readily induced in wild-type mice by the same protocol. Weak CTL responses were produced in TNF-alpha(-/-) mice after two sessions of immunization with the HBV plasmid; however, TNF-alpha was required to maintain the responses of these CTL lines to in vitro stimulation and, even then, the responses were lost after 3 weeks. Interestingly, a limiting dilution of a CTL line showed that HBV-specific CTL clones with high specific cytotoxicity were present in TNF-alpha(-/-) mice, but these clones again failed to proliferate for more than 3 weeks. Furthermore, since exogenously added TNF-alpha enhanced the proliferation of a TNF-alpha(-/-) clone but suppressed that of a TNF-alpha(+/+) clone in vitro, TNF-alpha also has a direct effect on the proliferation of CTLs. In conclusion, TNF-alpha is essential rather than important for the proliferation of HBV-specific CTLs both in vivo and in vitro and this effect is not only due to the activation of dendritic cells but is also induced by the direct effect on CTLs.  相似文献   

4.
S Shibata  S Kyuwa  S K Lee  Y Toyoda    N Goto 《Journal of virology》1994,68(11):7540-7545
Morphological changes of mouse hepatitis virus-infected J774.1 cells cocultured with cloned mouse hepatitis virus-specific CD8+ cytotoxic T lymphocytes were examined by electron microscopy. Condensation and margination of chromatin, cellular shrinkage with severe vacuolar degeneration, and blebbing were observed. In addition, fragmentation of cellular DNA was observed, and a decrease in virus titer was accompanied by those changes. These findings show that the cloned cytotoxic T lymphocytes induce in the target cell an internal degradation program termed apoptosis, which results in virus clearance.  相似文献   

5.
To better understand the immunological mechanisms that permit prolonged shedding of murine cytomegalovirus (MCMV) from the salivary gland, the phenotypic and functional characteristics of leukocytes infiltrating the submaxillary gland (SMG) were analyzed in infected BALB/c mice. A robust innate immune response, comprised of CD11c+ major histocompatibility complex class II+ CD11b- CD8alpha+ dendritic cells and gamma/delta T-cell receptor-bearing CD3+ T cells was prominent through at least 28 days postinfection. Concurrently, a dramatic increase in pan-NK (DX5+) CD3+ and CD8+ T cells was observed, while CD4+ T cells, known to be essential for viral clearance from this tissue, increased slightly. The expression particularly of gamma interferon but also of interleukin-10 and CC chemokines was extraordinarily high in the SMG in response to MCMV infection. The gamma interferon was produced primarily by CD4+ and CD8+ T lymphocytes and DX5+ CD3+ T cells. The SMG CD8+ T cells were highly cytolytic ex vivo, and a significant proportion of these cells were specific to an immunodominant MCMV peptide. These peptide-specific clones were not exhausted by the presence of high virus titers, which persisted in the SMG despite the strength of the cell-mediated responses. In contrast, MCMV replication was efficiently cleared from the draining cervical and periglandular lymph nodes, a tissue displaying a substantially weaker antiviral response. Our data indicated that vigorous innate and acquired immune responses are elicited, activated, and retained in response to mucosal inflammation from persistent MCMV infection of the submaxillary gland.  相似文献   

6.
7.
Cytotoxic T lymphocytes (CTL) appear to be critical in resolving or reducing the severity of lentivirus infections. Retroviral vectors expressing the Gag/Pr or SU protein of the lentivirus equine infectious anemia virus (EIAV) were constructed and used to evaluate EIAV-specific CTL responses in horses. Three promoters, cytomegalovirus, simian virus SV40, and Moloney murine sarcoma virus (MoMSV) long terminal repeat (LTR), were used, and there was considerable variation in their ability to direct expression of Gag/Pr and SU. Vectors expressing EIAV proteins under the direction of MoMSV LTR and using the gibbon ape leukemia virus (GALV) Env for internalization were efficient at transducing equine kidney (EK) target cells and were effective targets for EIAV-specific CTL lysis. CTL from EIAV-infected horses caused lysis of retroviral vector-transduced EK cells expressing either Gag/Pr or SU in an ELA-A-restricted manner. In contrast, lysis of recombinant vaccinia virus-infected EK cells expressing Gag/Pr and SU/TM was often non-LA-A restricted. Five horses were immunized by direct intramuscular injection with a mixture of retroviral vectors expressing Gag/Pr or SU, and one responded with EIAV-specific CTL. This result indicates that retroviral vector stimulation of CTL in horses needs to be optimized, perhaps by inclusion of appropriate cytokine genes in the constructs. However, the studies demonstrated that retroviral vector-transduced target cells were very effective for in vitro dissection of EIAV-specific CTL responses.  相似文献   

8.
9.
Although the dynamics of human immunodeficiency virus and Simian immunodeficiency virus (SIV)-specific cytotoxic T cells (CTLs) have been well documented in the blood, little is known regarding CTL development in other tissues. In this study, seven Mamu-A*01+ macaques were inoculated with SIVmac. Two macaques were killed at 21 days of infection, and SIV gag p11C tetramer responses were measured in the blood, axillary and mesenteric lymph nodes, spleen, bone marrow, and thymus. Three with clinical signs of disease were killed and similarly examined. Four macaques were followed throughout disease progression, and intestinal biopsies and blood were examined at regular time points after inoculation. In animals followed prospectively, peak early tetramer responses were detected in the blood (3.9-19% of CD3+ CD8+ T cells) between day 14-21 post-inoculation (p.i.). After day 49, tetramer responses in the blood diminished and remained relatively stable through day 200, ranging from 0.7-6.5% of CD3+ CD8+ T cells. In contrast, tetramer-positive T cells increased in the intestine in later stages of infection (100-200 days p.i.) in all four infected animals (peak values from 5.3 to 28.8%). Percentages of tetramer-positive cells were consistently higher in the intestine than in the blood in all four animals after day 100. In animals with acquired immunodeficiency syndrome, percentages of CTL in tissues were variable, but were consistently higher in the intestine and spleen compared with blood. These data suggest that while high CTL responses develop at a similar rate, and magnitude in both peripheral and mucosal lymphoid tissues in primary SIV infection, mucosal CTL responses may predominate later in the course of the disease.  相似文献   

10.
We describe some aspects of the biology of a suppressor factor (SF) secreted by actively metabolizing and dividing alloantigen-primed T cells which functions by regulating human cytotoxic T-lymphocyte (CTL) activation. The SF functions most effectively during the first 24 hr of CTL activation, while it does not function at the CTL effector stage. Both T cells and adherent cells are capable of absorbing out the biological activity from suppressor factor supernatants. Experiments demonstrated that either fresh adherent cells or the addition of interleukin 2 (IL-2) into the test system could reverse the effects of the SF on CTL activation. These data suggest that the SF could be acting by either indirectly restricting IL-2 availability to proliferating CTLs by limiting adherent cell interleukin 1 (IL-1) secretion or, alternatively, SF acting directly on the IL-2-producing T cells.  相似文献   

11.
The recent identification of hepatitis B virus (HBV) epitopes restricted by multiple HLA alleles has greatly expanded the epitope repertoire available for T-cell-mediated therapeutic vaccine development. The HLA-B51-restricted peptide HBc19-27 is particularly interesting because it is located entirely within the HLA-A2-restricted HBc18-27 epitope. Here we show that HLA-B51-restricted cytotoxic T lymphocytes specific for HBc19-27 from a patient with acute HBV infection were also able to lyse HLA-B51-positive target cells pulsed with HBc18-27 and to produce gamma interferon when stimulated by that peptide, implying that HBc18-27 can be presented by HLA-B51 as well as by HLA-A2. These results demonstrate the concept of degenerate immunogenicity across HLA class supertype boundaries in a human viral disease setting. In addition, they could facilitate the development of an epitope-based therapeutic vaccine to terminate chronic HBV infection that could provide a broad and diverse population coverage with a single peptide.  相似文献   

12.
Since influenza A viruses of the H5N1 subtype continue to circulate in wild and domestic birds and cause an ever increasing number of human cases, it is feared that H5N1 viruses may cause the next influenza pandemic. Therefore, there is considerable interest in the development of vaccines that confer protection against infections with these viruses or ideally, protection against influenza viruses of different subtypes. For the development of broad-protective vaccines the induction of virus-specific cytotoxic T lymphocytes (CTL) may be an important target, since it has been demonstrated that CTL contribute to protective immunity and are largely directed to epitopes shared by influenza viruses of various subtypes. In the present paper, the possibility to develop (cross-reactive) CTL-inducing vaccines is discussed.  相似文献   

13.
Nearly all human immunodeficiency virus (HIV) infections are acquired mucosally, and the gut-associated lymphoid tissues are important sites for early virus replication. Thus, vaccine strategies designed to prime virus-specific cytotoxic T lymphocyte (CTL) responses that home to mucosal compartments may be particularly effective at preventing or containing HIV infection. The Salmonella type III secretion system has been shown to be an effective approach for stimulating mucosal CTL responses in mice. We therefore tested DeltaphoP-phoQ attenuated strains of Salmonella enterica serovar Typhimurium and S. enterica serovar Typhi expressing fragments of the simian immunodeficiency virus (SIV) Gag protein fused to the type III-secreted SopE protein for the ability to prime virus-specific CTL responses in rhesus macaques. Mamu-A*01(+) macaques were inoculated with three oral doses of recombinant Salmonella, followed by a peripheral boost with modified vaccinia virus Ankara expressing SIV Gag (MVA Gag). Transient low-level CTL responses to the Mamu-A*01 Gag(181-189) epitope were detected following each dose of SALMONELLA: After boosting with MVA Gag, strong Gag-specific CTL responses were consistently detected, and tetramer staining revealed the expansion of Gag(181-189)-specific CD8(+) T-cell responses in peripheral blood. A significant percentage of the Gag(181-189)-specific T-cell population in each animal also expressed the intestinal homing receptor alpha4beta7. Additionally, Gag(181-189)-specific CD8(+) T cells were detected in lymphocytes isolated from the colon. Yet, despite these responses, Salmonella-primed/MVA-boosted animals did not exhibit improved control of virus replication following a rectal challenge with SIVmac239. Nevertheless, this study demonstrates the potential of mucosal priming by the Salmonella type III secretion system to direct SIV-specific cellular immune responses to the gastrointestinal mucosa in a primate model.  相似文献   

14.
The outcome of antigen recognition by naive CD8+ cytotoxic T lymphocytes (CTLs) in the periphery is orchestrated by CD4+ T-helper cells, and can either lead to priming or tolerization. The presence of T-helper cells favors the induction of CTL immunity, whereas the absence of T-helper cells can result in CTL tolerance. The action of T helper cells in CTL priming is mediated by CD40-CD40 ligand interactions. We demonstrate here that triggering of CD40 in vivo can considerably enhance the efficacy of peptide-based anti-tumor vaccines. The combination of a tolerogenic peptide vaccine containing a minimal essential CTL epitope with an activating antibody against CD40 converts tolerization into strong CTL priming. Moreover, CD40 ligation can provide an already protective tumor-specific peptide vaccine with the capacity to induce therapeutic CTL immunity in tumor-bearing mice. These findings indicate that the CD40-CD40 ligand pair can act as a 'switch', determining whether naive peripheral CTLs are primed or tolerized, and support the clinical use of CD40-stimulating agents as components of anti-cancer vaccines.  相似文献   

15.
Although hepatitis B surface antigen (HBsAg) per se is highly immunogenic, its use as a vector for the delivery of foreign cytotoxic T-lymphocyte (CTL) epitopes has met with little success because of constraints on HBsAg stability and secretion imposed by the insertion of foreign sequence into critical hydrophobic/amphipathic regions. Using a strategy entailing deletion of DNA encoding HBsAg-specific CTL epitopes and replacement with DNA encoding foreign CTL epitopes, we have derived chimeric HBsAg DNA immunogens which elicited effector and memory CTL responses in vitro, and pathogen- and tumor-protective responses in vivo, when the chimeric HBsAg DNAs were used to immunize mice. We further show that HBsAg DNA recombinant for both respiratory syncytial virus and human papillomavirus CTL epitopes elicited simultaneous responses to both pathogens. These data demonstrate the efficacy of HBsAg DNA as a vector for the delivery of disease-relevant protective CTL responses. They also suggest the applicability of the approach of deriving chimeric HBsAg DNA immunogens simultaneously encoding protective CTL epitopes for multiple diseases. The DNAs we tested formed chimeric HBsAg virus-like particles (VLPs). Thus, our results have implications for the development of vaccination strategies using either chimeric HBsAg DNA or VLP vaccines. HBsAg is the globally administered vaccine for hepatitis B virus infection, inviting its usage as a vector for the delivery of immunogens from other diseases.  相似文献   

16.
Induction of effective immune responses may help prevent cancer progression. Tumor-specific antigens, such as those of human papillomaviruses involved in cervical cancer, are targets with limited intrinsic immunogenicity. Here we show that immunization with low doses (10(6) infectious units/dose) of a recombinant human adenovirus type 5 encoding a fusion of the E7 oncoprotein of human papillomavirus type 16 to the carboxyl terminus of the surface antigen of hepatitis B virus (HBsAg) induces remarkable E7-specific humoral and cellular immune responses. The HBsAg/E7 fusion protein assembled efficiently into virus-like particles, which stimulated antibody responses against both carrier and foreign antigens, and evoked antigen-specific kill of an indicator cell population in vivo. Antibody and T-cell responses were significantly higher than those induced by a control adenovirus vector expressing wild-type E7. Such responses were not affected by preexisting immunity against either HBsAg or adenovirus. These data demonstrate that the presence of E7 on HBsAg particles does not interfere with particle secretion, as it occurs with bigger proteins fused to the C terminus of HBsAg, and results in enhancement of CD8(+)-mediated T-cell responses to E7. Thus, fusion to HBsAg is a convenient strategy for developing cervical cancer therapeutic vaccines, since it enhances the immunogenicity of E7 while turning it into an innocuous secreted fusion protein.  相似文献   

17.
Protein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptides that bound with moderate to high affinity subsequently was assessed using HLA transgenic mice (CTL) and HLA cross-reacting H-2bxd (BALB/c × C57BL/6J) mice (HTL). Through this process, 30 CTL and 16 HTL epitopes were selected as a set that would be the most useful for vaccine design, based on epitope conservation among HBV sequences and HLA-based predicted population coverage in diverse ethnic groups. A plasmid DNA-based vaccine encoding the epitopes as a single gene product, with each epitope separated by spacer residues to enhance appropriate epitope processing, was designed. Immunogenicity testing in mice demonstrated the induction of multiple CTL and HTL responses. Furthermore, as a complementary approach, mass spectrometry allowed the identification of correctly processed and major histocompatibility complex-presented epitopes from human cells transfected with the DNA plasmid. A heterologous prime-boost immunization with the plasmid DNA and a recombinant MVA gave further enhancement of the immune responses. Thus, a multiepitope therapeutic vaccine candidate capable of stimulating those cellular immune responses thought to be essential for controlling and clearing HBV infection was successfully designed and evaluated in vitro and in HLA transgenic mice.  相似文献   

18.
Cytotoxic T lymphocytes (CTL) are thought to control hepatitis B virus (HBV) infection, since they are readily detectable in patients who clear the virus whereas they are hard to detect during chronic HBV infection. In chronic hepatitis C virus (HCV) infection, however, the virus persists in the face of a CTL response. Indeed, most infected patients respond to one or more HCV-1 (genotype 1a)-derived CTL epitopes in the core, NS3, and NS4 proteins, and the CTL response is equally strong in patients infected by different HCV genotypes, suggesting broad cross-reactivity. To examine the effect of the HCV-specific CTL response in patients with chronic hepatitis C on viral load and disease activity, we quantitated the strength of the multispecific CTL response against 10 independent epitopes within the HCV polyprotein. We could not detect a linear correlation between the CTL response and viral load or disease activity in these patients. However, the CTL response was stronger in the subgroup of patients whose HCV RNA was below the detection threshold of the HCV branched- chain DNA assay than in branched-chain-DNA-positive patients. These results suggest that the HCV-specific CTL response may be able to control viral load to some extent in chronically infected patients, and they indicate that prospective studies in acutely infected patients who successfully clear HCV should be performed to more precisely define the relationship between CTL responsiveness, viral clearance, and disease severity in this infection.  相似文献   

19.
The efficiency of cloned class I MHC restricted CTL specific for the nucleoprotein or glycoprotein of lymphocytic choriomeningitis virus in either mediating virus clearance or immunopathologic disease in mice during acute infection was quantitated. Cloned CTL specific for either an internal (nucleoprotein) or surface (glycoprotein) protein of lymphocytic choriomeningitis virus, when administered intracerebrally 5 days after the initiation of infection induced fatal immunopathology, indicating that both internal and surface viral Ag play a role in immune mediated disease in vivo. Dose-response analysis indicated that only 10(2) to 10(3) cloned CTL injected intracerebrally were required to induce mortality in 50% of inoculated syngeneic mice. Thus relatively few virus-specific CTL are required to induce an acute immunopathologic disease in the central nervous system. In contrast, if cloned CTL are adoptively transferred at the time of initiation of viral infection they provide protection as demonstrated by their ability to eliminate virus from the brain and thus terminate the acute infection.  相似文献   

20.
Co-administration of soluble Ag and anti-CD4 mAb has been successfully used to induce long term Ag-specific tolerance. The mechanisms underlying persistent immunologic unresponsiveness are unclear. We have now studied whether tolerance toward complex viral Ag expressed on Moloney sarcoma virus (MSV)-transformed tumor cells can be induced when given at the time of severe helper cell depletion. Although mice that had been injected with anti-CD4 mAb at the time of immunization regained the ability to recognize MSV Ag, their humoral and cytotoxic immunity to MSV were severely compromised. Ag-specific low responsiveness was maintained for more than 6 mo. To analyze the T cell repertoire of low responder mice we have estimated precursor frequencies of MSV-specific proliferative and cytotoxic T cells after the CD4+ T cell subset was fully reconstituted. There was no difference in the frequencies of control and low responder mice excluding clonal deletion as the mechanism maintaining low responsiveness. In co-culture experiments the defect in low responder mice could be localized to the regenerated CD4+ T cell subset, suggesting the induction of CD4+ suppressor-inducer cells. Alternatively, regenerated CD4+ cells in anti-CD4 conditioned mice had acquired a defect to provide help for MSV-specific responses. In spite of the potentials to induce low responsiveness to selected Ag by anti-CD4 conditioning, the risk to cause persistent virus-specific immunodeficiency might limit the clinical application of anti-CD4 therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号