首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Onishi  T Maita  G Matsuda  K Fujiwara 《Biochemistry》1989,28(4):1898-1904
The rigor complexes that formed between rabbit skeletal muscle F-actin and chicken gizzard heavy meromyosin (HMM), in which the heavy chains had been cleaved with trypsin into 24K, 50K, and 68K fragments, were examined by using the zero-length chemical cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). Two cross-linked products of approximate Mr 115K and 60K were generated. These products were not obtained by EDC treatment of HMM in the absence of F-actin. The HMM fragments that participated in cross-linking were identified by fluorescent labeling and amino acid composition studies. The 115K peptide was determined to be a covalently cross-linked complex that formed between actin and the COOH-terminal 68K fragment of the HMM heavy chain. Our results are in agreement with a previous study which proposed that the site of cross-linking between HMM and F-actin resides within the COOH-terminal 22K fragment of the myosin subfragment 1 heavy chain [Marianne-Pépin, T., Mornet, D., Bertrand, R., Labbé, J.-P., & Kassab, R. (1985) Biochemistry 24, 3024-3029]. The 60K peptide, however, was not a product of cross-linking between HMM and F-actin. On the basis of its amino acid composition, we concluded that this 60K peptide was a cross-linked dimer of the NH2-terminal 24K fragments of the HMM heavy chain. The cross-linking of acto-gizzard HMM significantly increased the Mg-ATPase activity of gizzard HMM without any observable phosphorylation of the regulatory (20K) light chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
P Chaussepied  D Mornet  R Kassab 《Biochemistry》1986,25(21):6426-6432
Using the thrombin-cut [68-30 kilodalton (kDa)] myosin subfragment 1 (S-1) whose heavy chain has been selectively split within the central 50-kDa region, at Lys-560, with concomitant specific alterations of the ATPase and actin binding properties [Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J., & Kassab, R. (1986) Biochemistry 25, 1134-1140; Chaussepied, P., Mornet, D., Barman, T., Travers, F., & Kassab, R. (1986) Biochemistry 25, 1141-1149], we have isolated and renatured the COOH-terminal 30-kDa fragment associated with the alkali light chains by the procedure recently described [Chaussepied, P., Mornet, D., Audemard, E., Kassab, R., Goodearl, J., Levine, B., & Trayer, I. P. (1986) Biochemistry 25, 4540-4547]. The 30-kDa peptide preparation was found to exhibit a crucial feature of the native S-1; namely, it interacts with F-actin in an adenosine 5'-triphosphate (ATP)-dependent manner. Studies by ultracentrifugation, turbidity measurements, and chemical cross-linking experiments showed that the acto-30-kDa peptide complex was dissociated almost completely by the gamma-phosphoryl group containing ligands ATP, 5'-adenylyl imidodiphosphate, and pyrophosphate, to a lesser extent by ADP, and not at all by AMP and inorganic phosphate. The maximal dissociating effect is operating with the thrombic 30-kDa entity, whereas the 22-kDa fragment produced by staphylococcal protease is only slightly dissociated. In contrast, the tryptic 20-kDa fragment binds irreversibly to actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The myosin SH2-50-kilodalton fragment cross-link: location and consequences   总被引:6,自引:0,他引:6  
Some of us recently described a new interthiol cross-link which occurs in the skeletal myosin subfragment 1-MgADP complex between the reactive sulfhydryl group "SH2" (Cys-697) and a thiol (named SH chi) of the 50-kilodalton (kDa) central domain of the heavy chain; this link leads to the entrapment of the nucleotide at the active site [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041]. In the present study, we identify SH chi as Cys-540 of the 50-kDa fragment. The portion of the heavy chain including this residue and also extending to Cys-522 that is cross-linkable to the "SH1" thiol [Ue, K. (1987) Biochemistry 26, 1889-1894] is near the SH2-SH1 region. Furthermore, various spectral and enzymatic properties of the (Cys697-Cys540)-N,N'-p-phenylenedimaleimide (pPDM)-cross-linked myosin chymotryptic subfragment 1 (S-1) were established and compared to those for the well-known (SH1-SH2)-pPDM-cross-linked S-1. The circular dichroism spectra of the new derivative were similar to those of native S-1 complexed to MgADP. At 15 mM ionic strength, (Cys697-Cys540)-S-1 binds very strongly to unregulated actin (Ka = 7 X 10(6) M-1), and the actin binding is very weakly affected by ionic strength. Joining actin with the (Cys697-Cys540)-S-1 heavy chain, using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, produces different species than does joining unmodified S-1 with actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Myosin subfragment 1 (S1) can be specifically modified at Lys-553 with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) (Bertrand, R., J. Derancourt, and R. Kassab. 1995. Biochemistry. 34:9500-9507), and solvent quenching of FHS-S1 with iodide has been shown to be sensitive to actin binding at low ionic strength (MacLean, Chrin, and Berger, 2000. Biophys. J. 000-000). In order to extend these results and examine the fraction of actin-bound myosin heads within the myofilament lattice during calcium activation, we have modified skeletal muscle myofibrils, mildly cross-linked with EDC (1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide) to prevent shortening, with FHS. The myosin heavy chain appears to be the predominant site of labeling, and the iodide quenching patterns are consistent with those obtained for myosin S1 in solution, suggesting that Lys-553 is indeed the primary site of FHS incorporation in skeletal muscle myofibrils. The iodide quenching results from calcium-activated FHS-myofibrils indicate that during isometric contraction 29% of the myosin heads are strongly bound to actin within the myofilament lattice at low ionic strength. These results suggest that myosin can be specifically modified with FHS in more complex and physiologically relevant preparations, allowing the real time examination of cross-bridge interactions with actin in in vitro motility assays and during isometric and isotonic contractions within single muscle fibers.  相似文献   

5.
To better characterize the conformational differences of G- and F-actin, we have compared the interaction between G- and F-actin with myosin subfragment 1 (S1) which had part of its F-actin binding site (residues 633-642) blocked by a complementary peptide or "antipeptide" (Chaussepied, P., and Morales, M. F. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471-7475). Light scattering, sedimentation, and electron microscopy measurements showed that, with the antipeptide covalently attached to the S1 heavy chain, S1 was not capable of inducing G-actin polymerization in the absence of salt. Moreover, the antipeptide-carrying S1 did not change the fluorescence polarization of 5-[2-(iodoacetyl)-aminoethyl]aminonaphthalene-1-sulfonic acid (1,5-IAEDANS)-labeled G-actin or of 1,5-IAEDANS-labeled actin dimer, compared to the control S1. This result, interpreted as a lack of interaction between G-actin and antipeptide-carrying S1, was confirmed further by the following experiments: in the presence of G-actin, antipeptide.S1 heavy chain was not protected against trypsin and papain proteolysis, and G-actin could not be cross-linked to antipeptide.S1 by 1-ethyl-3[-3-(dimethylamino)propyl]carbodiimide. In contrast, similar experiments showed that antipeptide.S1 was able to interact with nascent F-actin and with F-actin. Thus, blocking the stretch 633-642 of S1 heavy chain by the antipeptide strongly inhibits G-actin-S1 interaction but only slightly alters F-actin-S1 contact. We, therefore postulate that this stretch of skeletal S1 heavy chain is essential for G-actin-S1 interaction and that the G-F transformation generates new S1 binding site(s) on the actin molecule.  相似文献   

6.
The heavy chain fragments generated by restricted proteolysis of the smooth chicken gizzard myosin subfragment-1 (S-1) with trypsin, Staphylococcus aureus V8 protease, and chymotrypsin were isolated and submitted to partial amino acid sequencing. The comparison between the smooth and striated muscle myosin sequences permitted the unambiguous structural characterization of the two protease-vulnerable segments joining the three putative domain-like regions of the smooth head heavy chain. The smooth carboxyl-terminal connector is a serine-rich region located around positions 632-640 of the rabbit skeletal sequence and would represent the "A" site that is conformationally sensitive to the myosin 10 S-6 transition and to its interaction with actin (Ikebe, M., and Hartshorne, D. J. (1986) Biochemistry 25, 6177-6185). A third site which undergoes a nucleotide-dependent chymotryptic cleavage which inactivates the Mg2+-ATPase (Okamoto, Y., and Sekine, T. (1981) J. Biochem. (Tokyo) 90, 833-842, 843-849) was identified at Trp-31/Ser-32. It is vicinal to Lys-34 that is monomethylated in the skeletal heavy chain but not at all in the smooth sequence. However, the two trimethyl lysine residues present in the skeletal sequence are conserved in the same regions of the smooth S-1 and may play a general functional role in myosin. The smooth central 50-kDa segment could be selectively destroyed by a mild tryptic digestion in the absence of any unfolding agent, with a concomitant inhibition of the ATPase activities. This feature is in line with the proposed domain structure of the S-1 heavy chain and also suggests a relationship between the specific biochemical properties of the smooth S-1 and the particular conformation of its 50-kDa region.  相似文献   

7.
M Ikebe  D J Hartshorne 《Biochemistry》1986,25(20):6177-6185
It was shown previously [Ikebe, M., & Hartshorne, D. J. (1985) Biochemistry 24, 2380-2387] that the conformation of gizzard myosin, either 10S or 6S, influences proteolysis of myosin at two regions designated sites A and B. The studies reported here are focused on site A, which is located approximately 68,000 daltons from the N-terminus of the myosin heavy chain. With papain, Staphylococcus aureus protease, and actinidin, it is shown that the formation of 10S myosin reduces proteolysis at site A. Binding of actin to 6S myosin also hinders cleavage at site A for each of these proteases. To investigate binding of actin to 6S and 10S myosins, adenosine 5'-(beta,gamma-imidotriphosphate) (AMPPNP) is used as a substitute for ATP. In the presence of AMPPNP, it is shown that the 6S to 10S transition occurs and that 10S myosin binds actin with lower affinity than 6S myosin. For 6S myosin at high salt (0.35 M KCl) the dissociation constant of actin from the actin-myosin-nucleotide complex (K3) is approximately the same for phosphorylated (1.9 mol of P/mol of myosin) and dephosphorylated myosin, i.e., 1.3-2.4 microM, respectively. At lower ionic strength (0.17 M KCl) K3 for dephosphorylated myosin (10S myosin) is 42 microM and K3 for phosphorylated myosin (6S myosin) is 0.3 microM. These data show that the conformation of myosin influences the actin-myosin interaction. The constant (K4) for the dissociation of nucleotide from the actin-myosin-nucleotide complex varies slightly (in the range of 0.2-1.3 mM), but there is no marked change as a result of either a conformational change or phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
J Botts  A Muhlrad  R Takashi  M F Morales 《Biochemistry》1982,21(26):6903-6905
Myosin subfragment 1 (S-1) was fluorescently labeled at its rapidly reacting thiol ("SH1"). Short exposure to trypsin cuts the S-1 heavy chain into three still-associated fragments (20K, 50K, and 27K) [Balint, M., Wolf, L., Tarcsafalvi, A., Gergely, J., & Sreter, F.A. (1978) Arch. Biochem. Biophys. 190, 793-799] which bind F-actin to the same extent as does the uncut labeled S-1, as indicated by time-resolved fluorescence anisotropy decay (at 4 degrees C, pH 7, in 0.15 M KC1 and 5 mM MgC12, +/- 1 mM ADP). These results are thus in agreement with turbidity measurements on similar systems as reported by Mornet et al. [Mornet, D., Pantel, P., Audemard, E., & Kassab, R. (1979) Biochem. Biophys. Res. Commun. 89, 925-932]. The excited-state lifetime of the fluorescent label on cut S-1 is indistinguishable from that on normal S-1 (+/- ADP, +/- F-actin). F-Actin activation of MgATPase of cut S-1 is lower than that for normal S-1 at moderate concentrations of F-actin, as reported by Mornet et al. (1979). But as the F-actin concentration is increased, the MgATPase activities for cut S-1 approach those for uncut S-1. In terms of an eight-species steady-state kinetics scheme involving actin binding to free S-1, S-1 . ATP, S-1. ADP X P, and S-1 . ADP, actin affinity for the species S-1 . ADP X P was found to be 13.4 times greater for uncut S-1 than for cut S-1 [at 24 degrees C, pH 7.0, in 3 mM KC1, 1 mM ATP, 1 mM MgCl2, and 20 mM N-[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid].  相似文献   

9.
The cross-linking of actin to myosin subfragment 1 (S-1) with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide was reexamined by using two cross-linking procedures [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306; Sutoh, K. (1983) Biochemistry 22, 1579-1585] and two independent methods for quantitating the reaction products. In the first approach, the cross-linked acto-S-1 complexes were cleaved with elastase at the 25K/50K and 50K/22K junctions in S-1. This enabled direct measurements of the cross-linked and un-cross-linked fractions of the 50K and 22K fragments of S-1. We found that in all cases actin was preferentially cross-linked to the 22K fragment and that the overall stoichiometry of the main cross-linked products was that of a 1:1 complex of actin and S-1. In the second approach, actin was cross-linked to tryptically cleaved S-1, and the course of these reactions was monitored by measuring the decay of the free 50K and 20K fragments and the formation of cross-linked products. After selecting the optimal cross-linking procedure and conditions, we determined that the rate of actin cross-linking to the 20K fragment of S-1 was 3-fold faster than the reaction with the 50K peptide. The overall rate of cross-linking actin to S-1 corresponded to the sum of the individual reactions of the 50K and 20K fragments, indicating their mutually exclusive cross-linking to actin. Thus, the reactions with tryptically cleaved S-1 were consistent with the 1:1 stoichiometry of actin and S-1 in the main cross-linked products and verified the preferential cross-linking of actin to the 20K fragment of S-1. These results are discussed in the context of the binding of actin to S-1.  相似文献   

10.
To probe the effect of nucleotide on the formation of ionic contacts between actin and the 567-578 residue loop of the heavy chain of rabbit skeletal muscle myosin subfragment 1 (S1), the complexes between F-actin and proteolytic derivatives of S1 were submitted to chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. We have shown that in the absence of nucleotide both 45 kDa and 5 kDa tryptic derivatives of the central 50 kDa heavy chain fragment of S1 can be cross-linked to actin, whereas in the presence of MgADP.AlF4, only the 5 kDa fragment is involved in cross-linking reaction. By the identification of the N-terminal sequence of the 5-kDa fragment, we have found that trypsin splits the 50 kDa heavy chain fragment between Lys-572 and Gly-573, the residues located within the 567-578 loop. Using S1 preparations cleaved with elastase, we could show that the residue of 567-578 loop that can be cross-linked to actin in the presence of MgADP.AlF4 is Lys-574. The observed nucleotide-dependent changes of the actin-subfragment 1 interface indicate that the 567-578 residue loop of skeletal muscle myosin participates in the communication between the nucleotide and actin binding sites.  相似文献   

11.
H Onishi  T Maita  G Matsuda  K Fujiwara 《Biochemistry》1992,31(4):1201-1210
The interaction between the heavy and the regulatory light chains within chicken gizzard myosin heads was investigated by using a zero-length chemical cross-linker, 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide (EDC). The chicken gizzard subfragment 1 (S-1) used was treated with papain so that the heavy chain was partly cleaved into the NH2-terminal 72K and the COOH-terminal 24K fragments and the regulatory light chain into the 16K fragment. S-1 was reacted with EDC either alone or in the presence of ATP or F-actin. In all cases, the 16K fragment of the regulatory light chain formed a covalent cross-link with the 24K heavy chain fragment but not with the 72K fragment. The 38K cross-linked peptide, which was the product of cross-linking between the 16K light chain and the 24K heavy chain fragments, was isolated and further cleaved with cyanogen bromide and arginylendopeptidase. Smaller cross-linked peptides were purified by reverse-phase HPLC and then characterized by amino acid analysis and sequencing. The results indicated that cross-linking occurred between Lys-845 in the heavy chain and Asp-168, Asp-170, or Asp-171 in the regulatory light chain. The position of the cross-linked lysine was only three amino acid residues away from the invariant proline residue mapped as the S-1-rod hinge by McLachlan and Karn [McLachlan, A. D., & Karn, J. (1982) Nature (London) 299, 226-231]. We propose that the COOH-terminal region of the regulatory light chain is located in the neck region of myosin and that this region and the phosphorylation site of the regulatory light chain together may play a role in the phosphorylation-induced conformational change of gizzard myosin.  相似文献   

12.
Tryptic digestion of rabbit skeletal myofibrils at physiological ionic strength and pH results in cleavage of the myosin heavy chain at one site giving two bands (Mr = 200,000 and 26,000) on sodium dodecyl sulfate/polyacrylamide gels. Following addition of sodium pyrophosphate (to 1 mm) to dissociate the myosin heads from actin, tryptic proteolysis results in production of three bands, 160K2, 51K and 26K, with a 74K band appearing as a precursor of the 51K and 26K species. Under these conditions, there is insignificant cleavage of heavy chain to the heavy and light meromyosins. Trypsin-digested myofibrils yield the same amount of rod as native myofibrils when digested with papain. These results indicate that actin blocks tryptic cleavage of the myosin heavy chain at a site 74K from the N terminus. From measurements of the amount of 51K species formed by digestion of rigor fibers at various sarcomere lengths, we estimate that at least 95% of the myosin heads are bound to actin at 100% overlap of thick and thin filaments. Hence all myosin molecules can bind to actin, and consequently both heads of a myosin molecule can interact simultaneously with actin filaments under rigor conditions.  相似文献   

13.
Recently, by treating the head portion of skeletal myosin subfragment-1 (S1) with the bifunctional agent dibromobimane, we introduced an intramolecular covalent cross-link which resulted in the stabilisation of an internal loop in the heavy chain structure of the head [Mornet et al. (1984) Proc. Natl Acad. Sci. USA 82, 1658-1662]. In order to define the functional properties of this new S1 conformational state, we have first determined the experimental conditions for the optimum modification of S1 by dibromobimane. We finally settled on a 60% yield of cross-linked S1. Because the modification occurs between the 50-kDa and the 20-kDa tryptic heavy chain fragments which have been postulated to be involved in the interaction of native S1 with actin, we have investigated the association of dibromobimane-treated S1 with actin, using chemical cross-linking of their rigor complex with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linked species obtained were analyzed by polyacrylamide gel electrophoresis and compared with those known for unmodified S1. The carbodiimide-catalyzed linkage between actin and dibromobimane-modified S1 led to a singlet protein band migrating with an apparent molecular mass of 155 kDa, in contrast to the usual doublet bands of 175 kDa and 185 kDa produced with native S1. This result suggests that a change has occurred at the actin interface on the dibromobimane-treated S1 heavy chain. The covalent complex generated by carbodiimide cross-linking between actin and dibromobimane-modified S1 (27-kDa + 50-kDa + 20-kDa fragments) was submitted to chemical hydrolysis with hydroxylamine. The nature of the products identified is consistent with the conclusion that the internal freezing of the heavy chain structure by dibromobimane induces the loss of the ability to cross-linkage of the actin site on the 20-kDa domain but does not affect the conformation of the second site on the 50-kDa segment, which becomes the unique actin region cross-linkable by actin.  相似文献   

14.
During development of fast contracting skeletal muscle in the rat hindleg, embryonic and neonatal forms of the myosin heavy chain are present prior to the accumulation of the adult fast type ( Whalen , R. G., Sell, S. M., Butler-Browne, G.S., Schwartz, K., Bouveret, P., and Pinset -H arstr ?m, I. (1981) Nature (Lond.) 292, 805-809). Polypeptide mapping of the heavy chain subunit using partial proteolysis in the presence of sodium dodecyl sulfate has shown differences in the cleavage patterns for these various heavy chains. Using this technique, we have now examined subfragments, which represent functional domains, from several different myosin isozymes. The heavy chains of the S-1 subfragments containing either light chain 1 or light chain 3 are indistinguishable for the neonatal or fast myosin isozymes. We also isolated the S-1 fragments and the alpha-helical COOH-terminal half of the molecule (rod) from rat embryonic, neonatal, and adult fast and slow myosin, as well as myosin from cardiac ventricles. All of these S-1 and rod fragments were different, indicating that the previously reported differences among these different myosin heavy chain isozymes are located in both the S-1 and rod subfragments for all myosins examined. However, the polypeptide maps of neonatal and adult fast S-1 show clear similarities, as do the maps of slow and cardiac S-1. These similarities in the two pairs of polypeptide maps were confirmed by the results of immunoblotting experiments using antibodies to adult fast and to slow myosin.  相似文献   

15.
Characterization of caldesmon binding to myosin   总被引:3,自引:0,他引:3  
Caldesmon inhibits the binding of skeletal muscle subfragment-1 (S-1).ATP to actin but enhances the binding of smooth muscle heavy meromyosin (HMM).ATP to actin. This effect results from the direct binding of caldesmon to myosin in the order of affinity: smooth muscle HMM greater than skeletal muscle HMM greater than smooth muscle S-1 greater than skeletal muscle S-1 (Hemric, M. E., and Chalovich, J. M. (1988) J. Biol. Chem. 263, 1878-1885). We now show that the difference between skeletal muscle HMM and S-1 is due to the presence of the S-2 region in HMM and is unrelated to light chain composition or to two-headed versus single-headed binding. Differences between the binding of smooth and skeletal muscle myosin subfragments to actin do not result from the lack of light chain 2 in skeletal muscle S-1. In the presence of ATP, caldesmon binds to smooth muscle myosin filaments with a stoichiometry of 1:1 (K = 1 x 10(6) M-1). Similar results were obtained for the binding of caldesmon to smooth muscle rod as well as the binding of the purified myosin-binding fragment of caldesmon to smooth muscle myosin. The binding of caldesmon to intact myosin is ATP sensitive. The interaction of caldesmon with myosin is apparently specific and sensitive to the structure of both proteins.  相似文献   

16.
Acanthamoeba myosin IB contains a 125-kDa heavy chain that has high actin-activated Mg2+-ATPase activity when 1 serine residue is phosphorylated. The heavy chain contains two F-actin-binding sites, one associated with the catalytic site and a second which allows myosin IB to cross-link actin filaments but has no direct effect on catalytic activity. Tryptic digestion of the heavy chain initially produces an NH2-terminal 62-kDa peptide that contains the ATP-binding site and the regulatory phosphorylation site, and a COOH-terminal 68-kDa peptide. F-actin, in the absence of ATP, protects this site and tryptic cleavage then produces an NH2-terminal 80-kDa peptide. Both the 62- and the 80-kDa peptides retain the (NH+4,EDTA)-ATPase activity of native myosin IB and both bind to F-actin in an ATP-sensitive manner. However, only the 80-kDa peptide retains a major portion of the actin-activated Mg2+-ATPase activity. This activity requires phosphorylation of the 80-kDa peptide by myosin I heavy chain kinase but, in contrast to the activity of intact myosin IB, it has a simple, hyperbolic dependence on the concentration of F-actin. Also unlike myosin IB, the 80-kDa peptide cannot cross-link F-actin filaments indicating the presence of only a single actin-binding site. These results allow the assignment of the actin-binding site involved in catalytic activity to the region near, and possibly on both sides of, the tryptic cleavage site 62 kDa from the NH2 terminus, and the second actin-binding site to the COOH-terminal 45-kDa domain. Thus, the NH2-terminal 80 kDa of the myosin IB heavy chain is functionally similar to the 93-kDa subfragment 1 of muscle myosin and most likely has a similar organization of functional domains.  相似文献   

17.
Mapping of actin-binding sites on the heavy chain of myosin subfragment 1   总被引:20,自引:0,他引:20  
K Sutoh 《Biochemistry》1983,22(7):1579-1585
When the rigor complex of actin and myosin subfragment 1 (S1) was treated with a zero-length cross-linker, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, covalently linked complexes of actin and S1 heavy chain with apparent molecular weights of 165,000 and 175,000 were generated. Measurements of the molar ratio of actin to S1 heavy chain in the 165K and 175K products showed that they were 1:1 complexes of actin and S1 heavy chain. Chemical cleavages of the cross-linked products followed by peptide mappings revealed that two distinct segments of S1 heavy chain spanning the 18K-20K region and the 27K-35K region from its C terminus participated in cross-linking with actin. Cross-linking of actin to the former site generated the 165K peptide while the latter site was responsible for generating the 175K peptide.  相似文献   

18.
Myosin was extracted from frozen squid brain and purified by a modification of the procedure of Pollard et al. (Pollard, T.D., Thomas, S.M., and Niederman, R. (1974) Anal. Biochem. 60, 258-266). Myosin was eluted from Bio-Gel A-15m column as a single peak of (K+-EDTA)-activated ATPase ((K+-EDTA)-ATPase) activity with an average partition coefficient (Kav) of 0.22. In sodium dodecyl sulfate-acrylamide gel electrophoresis, the purified myosin showed a predominant band with similar electrophoretic mobility as the heavy chain of rabbit skeletal muscle myosin, and two less intense bands near the bottom of the gel. No actin band was seen. The properties of the (K+-EDTA)-ATPase activity were: (a) the time course of the reaction was biphasic at 25 degrees but linear at 32 degrees; (b) the optimum rate of reaction was obtained between 0.3 and 0.8 M KCl; (c) the pH optimum was between 8.0 and 9.0; (d) the reaction was specific for ATP with an apparent Km of 0.19 mM. ATPase activity in 0.06 M KCl and 5 mM MgCl2 was increased about 1.5 times by a 10-fold excess of rabbit skeletal muscle F-actin and about 5 times by a 40-fold excess. The actin activation was inhibited slightly by the addition of 0.2 mM CaCl2 and completely by the addition of 10 mM CaCl2. Myosin formed arrowhead patterns with rabbit skeletal muscle F-actin as observed by electron microscopy of negatively stained samples. It also aggregated in bipolar filaments which attached to decorated actin filaments at different angles, as well as formed cross-connections and ladder-like patterns between actin filaments. These two forms of interactions between myosin and actin were abolished by treatment with MgATP.  相似文献   

19.
Smooth muscle myosin light chain kinase contains a 64 residue sequence that binds calmodulin in a Ca2+-dependent manner (Guerriero, V., Jr., Russo, M. A., and Means, A. R. (1987) Biochemistry, in press). Within this region is a sequence with homology to the corresponding sequence reported for the calmodulin binding region of skeletal muscle myosin light chain kinase (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, L., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191). Inspection of these sequences reveals that they both share a similar number and spatial arrangement of basic residues with those present in the myosin light chain substrate. We have synthesized a 22-residue peptide corresponding to residues 480-501 (determined from the cDNA) of the smooth muscle myosin light chain kinase. This peptide, Ala-Lys-Lys-Leu-Ser-Lys-Asp-Arg-Met-Lys-Lys-Tyr-Met-Ala-Arg-Arg-Lys-Trp- Gln-Lys-Thr-Gly, inhibited calmodulin-dependent activation of the smooth muscle myosin light chain kinase with an IC50 of 46 nM. At saturating concentrations of calmodulin, the 22-residue peptide inhibited myosin light chain and synthetic peptide substrate phosphorylation competitively with IC50 values of 2.7 and 0.9 microM, respectively. An 11-residue synthetic peptide analog, corresponding to part of the calmodulin-binding sequence in skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys-Lys-Asn-Phe-Ile-Ala-Val, also competitively inhibited synthetic peptide substrate phosphorylation with a Ki of 1 microM. The competitive inhibitory activity of the calmodulin binding regions is similar to the apparent Km of 2.7 microM for phosphorylation of the 23-residue peptide analog of the smooth muscle myosin light chain and raises the possibility that the calmodulin binding region of the myosin light chain kinase may act as a pseudosubstrate inhibitor of the enzyme.  相似文献   

20.
Competition experiments using 9-anthroylcholine, a fluorescent dye that undergoes calmodulin-dependent binding by smooth muscle myosin light chain kinase [Malencik, D. A., Anderson, S. R., Bohnert, J. L., & Shalitin, Y. S. (1982) Biochemistry 21, 4031], demonstrate a strongly stabilizing interaction between the adenosine 5'-triphosphate and myosin light chain binding sites operating within the enzyme-calmodulin complex but probably not in the free enzyme. The interactions in the latter case may be even slightly destabilizing. The fluorescence enhancement in solutions containing 5.0 microM each of the enzyme and calmodulin is directly proportional to the maximum possible concentration of bound calcium on the basis of four calcium binding sites. Evidently, all four calcium binding sites of calmodulin contribute about equally to the enhanced binding of 9-anthroylcholine by the enzyme. Fluorescence titrations on solutions containing 1.0 microM enzyme plus calmodulin yield a Hill coefficient of 1.2 and K = 0.35 +/- 0.08 microM calcium. Three proteolytic fragments of smooth muscle myosin light chain kinase, apparent products of endogenous proteolysis, were isolated and characterized. All three possess calmodulin-dependent catalytic activity. Their interactions with 9-anthroylcholine, in both the presence and absence of calmodulin, are similar to those of the native enzyme. However, the stabilities of their complexes with calmodulin vary. The corresponding dissociation constants range from 2.8 nM for the native enzyme and 8.5 nM for the 96K fragment to approximately 15 nM for the 68K and 90K fragments [0.20 N KCl, 50 mM 3-(N-morpholino)propanesulfonic acid, and 1 mM CaCl2, pH 7.3, 25 degrees C]. A coupled fluorometric assay, modified from a spectrophotometric assay for adenosine cyclic 3',5'-phosphate dependent protein kinase [Cook, P. F., Neville, M. E., Vrana, K. E., Hartl, F. T., & Roskoski, R. (1982) Biochemistry 21, 5794], has provided the first continuous recordings of myosin light chain kinase phosphotransferase activity. The results show that smooth muscle myosin light chain kinase is a responsive enzyme, whose activity adjusts rapidly to changes in solution conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号