首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An effect of C-band pattern and polymorphism on chiasma distribution in pollen meiosis was recently demonstrated inScilla siberica. A further meiotic banding study has been performed in the alliesS. amoena, S. ingridae, andS. mischtschenkoana in order to analyze the effect, if any, of their specific C-band patterns and cytochemically different heterochromatin types on recombination. No clear evidence for a preferential formation of chiasmata adjacent to homozygous intercalary heterochromatin and no consistent reduction of chiasma frequency near strongly heterozygous intercalary heterochromatin blocks, as observed inS. siberica, could be found. Terminal C-band heteromorphism is suspected to cause distal chiasma defaults. The results suggest once more that there is no uniform effect of heterochromatin on crossover distribution.  相似文献   

2.
C-band patterns are described for 20Lilium spp. distributed across six sections. All species have a similar basic karyotype (n = 12) but C-bands differ markedly between them. The patterns are characterized by a dispersed scattering of thin intercalary bands as well as centric and NOR bands. Only one species,L. canadense, shows a clear equilocal pattern with intercalary C-bands occurring proximally in all of the longer chromosome arms. Comparing species, similar patterns are revealed forL. regale andL. sulphureum, forL. formosanum andL. longiflorum (all in sect.Leucolirion) and to a lesser extent forL. hansonii, L. martagon, andL. tsingtauense (sect.Martagon). The pattern forL. henryi (previously classed in sect.Sinomartagon) matches those ofL. regale andL. sulphureum quite well and its transfer to sect.Leucolirion is proposed. This is consistent with results from interspecies hybrids betweenL. henryi andL. regale (and related species) which are reportedly fertile. No other clear similarities in C-band patterns were seen across species. It seems that C-band patterns change rapidly inLilium and hence their usefulness in classification will be restricted to identifying closely related species.Dedicated to Prof.D. G. Catcheside on the 80th anniversary of his birth.  相似文献   

3.
Among a total of 43 accessions ofAlstroemeria aurea, A. ligtu andA. magnifica nuclear DNA amounts (2C-values) showed significant intraspecific variation, 1.09, 1.21 and 1.15 fold, respectively, when determined through flow cytometric measurements of fluorescence of propidium iodide (PI) stained nuclei. After staining with another fluorochrome, 4,6-diamidino-2-phenylindole (DAPI), an intraspecific variation of 1.10, 1.11 and 1.12 fold, respectively, was found. C-band polymorphisms were present among and within the accessions of all three species. In some cases only very small differences in C-banding pattern were observed. In other cases, however, differences were more prominent. Besides C-band polymorphism, there were also instances of chromosome length polymorphism, which concerned the total chromosome complement or single chromosomes. The variation in nuclear DNA amount inA. aurea andA. ligtu was more or less continuous, except for one accession ofA. ligtu subsp.simsii. Artificial selection and possibly introgression of chromosomes from other species may have moulded the karyotypes of some of the accessions ofA. aurea, a species that has been under cultivation for more than 160 years. The variation as observed inA. magnifica subsp.magnifica was discontinuous and could be due to a broad species concept.  相似文献   

4.
Karyotype attributes and heterochromatin distribution were used to characterize fourteen taxa of the subtribeLimodorinae (Orchidaceae). The karyotypes were established using morphometrical parameters following Feulgen staining and C-banding. No significant differences in heterochromatin content were found between specimens collected from various sites. Four species of theEpipactis helleborine group possess some chromosome pairs with quite similar heterochromatin patterns; some differences were found inE. distans with respect to other species of this group.Epipactis palustris differed significantly from otherEpipactis species in its different karyotype and its numerous terminal C-bands. The largest differences from the other genera were shown inLimodorum as far as karyomorphology and heterochromatin patterns were concerned. C-band distribution indicated similarity among non-homologous chromosomes, supporting a possible palaeo-polyploid origin for theCephalanthera andEpipactis karyotypes.  相似文献   

5.
Summary Linkage relationships were established between the secalin loci, Sec 1 (40-K gamma and omega secalins, homologous to the wheat gliadins) and Sec 3 (HMW = high-molecular-weight secalins, homologous to the wheat HMW glutenin subunits), and five chromosomal rearrangements involving chromosome 1R of rye (Secale cereale L.). These were: interchanges T273W (1RL/5RS), T306W (1RS/5RL), and T850W (1RS/ 4RL), Robertsonian centromere split Rb1RW and the interchanged Robertsonian split Rb2R/248W. The analysis established the linkage relationships between the secalin loci and the breakpoints of the rearrangements, in addition to the quantitative effects of the rearrangements on the linkage. Sec-1 is located in the satellite at a position at least 2.5 cMorgan from the proximal border of the terminal C-band, and about 30 cMorgan from the nucleolar organizing region (NOR). The locus is also physically closer to the terminal C-band than to the NOR, but not as much as corresponds with the map distances. Similarly, the physical distance between Sec-3 and the centromere is greater than corresponds with the recombination frequency (0%–9%). Although overall recombination in 1RL remains the same, recombination between the centromere and Sec-3 is greatly reduced in the Robertsonian split combined with the interchange. This is not the case with the single Robertsonian split.  相似文献   

6.
Application of Giemsa banding to orchid karyotype analysis   总被引:5,自引:0,他引:5  
A method for obtaining orchid chromosome squash preparations from ovular tissues and a Giemsa C-band technique are described. Jointly applied, they result in well-defined chromosome banding patterns. Preliminary tests with two species of the genusCephalanthera show that Giemsa banding is also well suited for orchids. Besides aiding in chromosome identification and karyotype analysis, it should prove valuable in studies of chromosomal variation and karyotype evolution of this large family.  相似文献   

7.
B-Chromosomes ofAllium flavum, A. stamineum andA. carinatum were C-banded. InA. flavum different types of B's were found, one of them possessing a nucleolus organizer. In the B's ofA. flavum andA. stamineum the banding patterns resemble those found in the standard chromosomes. The B inA. carinatum is only terminally banded. InA. flavum chiasma localization in the B's appears to be dependent on C-band location, just as is the case in the A-chromosomes. An increase in B's was found to cause a small (but significant) increase in chiasma frequency in the PMC's. This may result from an alteration in the nucleotype by the B's.  相似文献   

8.
Chromosome C-band patterns have been studied in 34 populations of the Australian annualBulbine group, which comprises 4x (2n = 26, 28), 8x (2n = 52, 54) and 12x (2n = 78) populations. The 2n = 26B. semibarbata populations have a simple, low heterochromatin pattern with very minor polytypic variation. The 2n = 28 populations, corresponding morphologically to a group given separate status asB. alata, are similar in pattern but exhibit pronounced enhancement of telomeric and, more particularly, centromeric dot bands. NOR heterochromatin and satellites are difficult to identify inB. alata but appear to occur in different positions from the 26-chromosome karyotype. Eastern Australian 8 x patterns are consistent with a proposed hybrid ancestry,B. semibarbata ×B. alata. Annual and perennial C-band profiles in the AustralianBulbine are discussed briefly in relation to the additive and transformation models of heterochromatin evolution and to the possible adaptive significance of variation in heterochromatin content.Cytoevolution in the AustralianBulbine 2; for part 1 see Pl. Syst. Evol.157, 201–217.  相似文献   

9.
C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.  相似文献   

10.
Thinopyrum distichum is indigenous to the southern and south western coastal shores of South Africa. Like many of the Thinopyrum species it can be hybridized with wheat. The resulting progeny treated with colchicine produce fertile amphiploids. The need to distinguish the Th. Distichum chromosomes from one another and from those of wheat prompted the investigation of the C-band distribution. The chromosome pairs of Th. distichum were distiguishable from each other and from those of wheat using C-band patterns, morphology and size as identification criteria. The chromosomes ranged from heterobrachial to metacentric with interstitial and telomeric C-bands. The C-band patterns of Th. distichum were similar, but not identical, to those of other Thinopyrum species.  相似文献   

11.
Chromosome painting using multicolor fluorescence in situ hybridization showed that, in addition to the T1AL·1RS translocation derived from rye, a segment from chromosome 3Ae#1 of Agropyron elongatum (2n=10x =70), is present in Amigo wheat. The Agropyron chromosome segment is located on the satellite of chromosome 1B and the translocation chromosome is designated as T1BL·1BS-3Ae#1L. T1BL·1BS-3Ae#1L was inherited from Teewon wheat and carries resistance genes to stem rust (Sr24) and leaf rust (Lr24). The Agropyron chromosome segments in different Sr24/Lr24 carrier wheat lines, including Agent, TAP 48, TAP 67, Teewon, and Amigo, showed a diagnostic C-band, and were derived from the same chromosome, 3Ae#1.  相似文献   

12.
A genetic map of rye, Secale cereale L., chromosome 1R covering 247 cM was constructed utilizing 27 RFLP and four C-band markers, including terminal C-bands. Genetic mapping of C-bands and the centromere, and in situ hybridization of three RFLP clones, allowed for the integration of the genetic and cytological maps. Eight contact points between the genetic and cytological maps revealed variation in the recombination distance to cytological distance ratio ranging between 0.25 and 1.95, a 7.8-fold difference. Recombination was found to be highest in the satellite region of 1RS and lowest in the most distal region of 1RL.  相似文献   

13.
Fluorochrome C-banding ofPinus radiata andP. taeda metaphase chromosomes showed many pericentromeric DAPI bands and interstitial CMA bands inP. radiata, and centromeric and interstitial CMA bands inP. taeda. Giemsa C-band patterns differed between the species with centromeric bands inP. radiata but no consistent bands inP. taeda. A karyotype ofP. radiata was developed based on banding patterns that distinguished all but two of the 12 pairs of chromosomes. In situ hybridization (ISH) using probes for high-copy ribosomal DNA (rDNA) showed 10 pairs of 18S–25S sites and two pairs of 5S sites in both species. Most of the sites were interstitial or centromeric.  相似文献   

14.
Eighteen specimens of Pimelodus maculatus collected from Tibagi River (Sertaneja, PR, Brazil) were analyzed cytogenetically. The diploid number of 56 chromosomes was observed and karyotype was 20 M + 20 SM + 10 ST + 6 A with fundamental number (FN) of 106. Results of analyses from the nucleolus organizer regions (NORs), obtained by AgNO3, CMA3 and C-band staining showed marking in a terminal position on the long arm of a pair of subtelocentric chromosomes. The restriction enzyme AluI produced a linear differentiation similar to C-banding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
This study centers on marker chromosomes carrying expanded chromosomal regions which were observed in two independent derivatives of the AA12 murine fibrosarcoma line, the 10–3 M MTX-res H2 and the 5×10–7 M MTX-res E. Previous characterization of the marker chromosomes of MTX-res variants showed their common derivation from a marker chromosome (m) of the parental line, endowed with two interstitial C-bands. Cytogenetic evidence pointed to one C-band ofm as the site involved in the chromosomal rearrangements leading to the HSR/ASR chromosomes. ISH of a3H-labeled satellite DNA probe allowed satellite sequences flanking the HSR/ASR in the marker chromosomes, where the C-band was no longer visible, to be detected. FISH experiments using biotinylated DHFR and satellite DNA probes showed that the respective target sequences are contiguous in new marker chromosomes. They also allowed inter- and intrachromosomal rearrangements to be seen at DHFR amplicons and satellite sequences. Double-color FISH using digoxygenated satellite DNA and biotinylated pDHFR7 showed that in a marker chromosome from the H2 cell line the two target sequences are not only adjacent, but closer than 3 Mb, as indicated by overlapping of the different fluorescence signals given by the two probes. Another marker chromosome in the E variant was shown to display a mixed ladder structure consisting of a head-to-head tandem of irregularly-sized satellite DNA blocks, with two symmetrical interspersed DHFR clusters.Abbreviations DHFR dihydrofolate reductase - MTX Methotrexate - HSR Homogeneously Staining Region - ASR Abnormally Staining Region - DM Double Minute - ISH In Situ Hybridization - FISH FluorescenceIn Situ Hybridization  相似文献   

16.
Quinacrine (Q-band) and centromeric heterochromatin (C-band) patterns of metaphase chromosomes of two subspecies of Mus musculus were compared. M. m. musculus (the laboratory mouse) and M. m. molossinus (a subspecies from Southeast Asia) had similar Q-band patterns along the length of the chromosomes, but differences were observed in the centromeric region of some chromosomes. The two subspecies had very different distributions of C-band material. Antibodies to 5-methylcytosine were bound to regions of the chromosome corresponding to the C-bands in each animal. These findings support the idea that satellite DNA, which is concentrated in the C-band region, changes more quickly than bulk DNA. The interfertility of these two subspecies permits the development of a musculus strain carrying normal marker chromosomes for genetic studies.  相似文献   

17.
The study of chromosomes in insects is a good tool in mitotic process analysis, zoographic localization and evolution investigation. Among them, the Sciaridae offers a karyotype with a small number of chromosomes, where the heterochromatin and nucleolar organizer region, NOR, are easily analyzed in metaphase chromosomes obtained from cerebral ganglia squashes. In this work, the heterochromatic regions on Bradysia hygida mitotic chromosomes, revealed by C-banding, were identified as centromeric blocks on A and C chromosomes and as dark interstitial region in B and X chromosomes. By Ag-DAPI staining, active nucleolus organizer region, NOR, was revealed associated to the constitutive heterochromatin in the end of the C autosome chromosome. The C-band regions and the unusual ribosomal site localization are discussed.  相似文献   

18.
Boroń A 《Genetica》2003,119(1):51-55
The chromosomal complement of Cobitis taenia was analysed by replication banding techniques to determine whether there were specific patterns that could allow distinction of the different chromosomes. The diploid chromosome number of 2n = 48 is diagnostic of this species. In vivo 5-bromodeoxyuridine (5-BrdU) incorporation induced highly reproducible replication bands. Most of the chromosome pairs were distinguishable on the base of their banding patterns. The karyotype, consisting of five pairs of metacentrics, nine pairs of submetacentrics and 10 pairs of subtelocentrics and acrocentrics, was confirmed. C-banding and replication banding patterns were compared, and heterochromatin was both early and later replicating. C-positive heterochromatin in centromeric regions was mainly early replicating, but that located in pericentromeric regions was late replicating. Most of the late-replicating regions found interstitially were C-band negative. The results obtained so far for combined chromosomal staining methods of C. taenia and other Cobitis fish species are discussed.  相似文献   

19.
S. cilicica Siehe andS. morrisii Meikle are two little known sibling species of theScilla siberica alliance with previously difficult taxonomy, especially with regard to specific delimitation and geographic distribution. Quantitative C-band karyotyping and DNA content determinations were performed in four provenances, including the type localities. Both species (2n = 12) differ strikingly in their banding patterns despite of similar DNA content. Karyotype diversification involved changes in eu- and heterochromatin quantities and resulted in some changes of chromosome form. Despite this, actual phylogenetic relatedness is indicated by a chromosomal marker (NOR-position) of rare occurrence in the alliance. Karyological results and circumstantial evidence from the literature suggest thatS. morrisii is an endemic, exclusive to Cyprus as a member of theS. siberica alliance.S. cilicica seems to be restricted to continental S. Anatolia opposite to Cyprus. Its occurrence on Cyprus is questionable.The authors dedicate this paper respectfully to emer. O. Univ.-Prof. DrLothar Geitler on the occasion of his 90th birthday.  相似文献   

20.
S. C. Donnellan 《Genetica》1991,83(3):207-222
The karyotypes of 25 species from the scincid genera Egernia, Corucia and Tiliqua have been investigated using C-banding, silver staining of nucleolar organiser regions (NORs) and Hoechst 33258 induced condensation inhibition. At least one member from each of the species groups of Egernia recognised by Storr et al. (1981) was studied. The three genera have very similar conventionally stained karyotypes of 32 chromosomes. Some species show departures from this basic karyotype but these are due to additions of C-band positive material. Silver stained. NOR patterns are variable but most species have a silver staining site on a pair of larger microchromosomes. All specimens studied except one have a proximal C-band on the acrocentric ninth pair, which shows failure to condense following treatment with the fluorochrome Hoechst 33258. Heterogamety was not observed in any species. Mabuya multifasciata, proposed as a relative of the Egernia group, while having 32 chromosomes does not share the C-band marker on pair nine, unique to the Egernia group. Tribolonotus gracilis, sometimes allied with the Egernia group, has 32 chromosomes and a similiar karyotype, but prominent procentric C-bands on all chromosome pairs obscure the detection of the proximal C-band marker on pair nine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号