首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structurally related mammalian α and β isoforms of phosphatidylinositol (PtdIns) transfer protein (PITP) bind reversibly a single phospholipid molecule, preferably PtdIns or phosphatidylcholine (PtdCho), and transport that lipid between membrane surfaces. PITPβ, but not PITPα, is reported extensively in the scientific literature to exhibit the additional capacity to bind and transport sphingomyelin (CerPCho). We undertook a detailed investigation of the lipid binding and transfer specificity of the soluble mammalian PITP isoforms. We employed a variety of donor and acceptor membrane lipid compositions to determine the sensitivity of recombinant rat PITPα and PITPβ isoforms toward PtdIns, PtdCho, CerPCho, and phosphatidate (PtdOH). Results indicated often striking differences in protein–phospholipid and protein–membrane interactions. We demonstrated unequivocally that both isoforms were capable of binding and transferring CerPCho; we confirmed that the β isoform was the more active. The order of transfer specific activity was similar for both isoforms: PtdIns>PtdCho>CerPCho≫PtdOH. Independently, we verified the binding of CerPCho to both isoforms by showing an increase in holoprotein isoelectric point following the exchange of protein-bound phosphatidylglycerol for membrane-associated CerPCho. We conclude that PITPα and PITPβ are able to bind and transport glycero- and sphingophospholipids.  相似文献   

2.
The Chediak-Higashi Syndrome (CHS) and the orthologous murine disorder beige are characterized at the cellular level by the presence of giant lysosomes. The CHS1/Beige protein is a 3787 amino acid protein of unknown function. To determine functional domains of the CHS1/Beige protein, we generated truncated constructs of the gene/protein. These truncated proteins were transiently expressed in Cos-7 or HeLa cells and their effect on membrane trafficking was examined. Beige is apparently a cytosolic protein, as are most transiently expressed truncated Beige constructs. Expression of the Beige construct FM (amino acids 1-2037) in wild-type cells led to enlarged lysosomes. Similarly, expression of a 5.5-kb region (amino acids 2035-3787) of the carboxyl terminal of Beige (22B) also resulted in enlarged lysosomes. Expression of FM solely affected lysosome size, whereas expression of 22B led to alterations in lysosome size, changes in the Golgi and eventually cell death. The two constructs could be used to further dissect phenotypes resulting from loss of the Beige protein. CHS or beigej fibroblasts show an absence of nuclear staining using a monoclonal antibody directed against phosphatidylinositol 4,5 bisphosphate [PtdIns(4,5) P2]. Transformation of beige j fibroblasts with a YAC containing the full-length Beige gene resulted in the normalization of lysosome size and nuclear PtdIns(4,5)P2 staining. Expression of the carboxyl dominant negative construct 22B led to loss of nuclear PtdIns(4,5)P2 staining. Expression of the FM dominant negative clone did not alter nuclear PtdIns(4,5) P2 localization. These results suggest that the Beige protein interacts with at least two different partners and that the Beige protein affects cellular events, such as nuclear PtdIns(4,5)P2 localization, in addition to lysosome size.  相似文献   

3.
Targeting and retention of resident integral membrane proteins of the Golgi apparatus underly the function of the Golgi in glycoprotein and glycolipid processing and sorting. In yeast, steady-state Golgi localization of multiple mannosyltransferases requires recognition of their cytosolic domains by the peripheral Golgi membrane protein Vps74, an orthologue of human GOLPH3/GPP34/GMx33/MIDAS (mitochondrial DNA absence sensitive factor). We show that targeting of Vps74 and GOLPH3 to the Golgi apparatus requires ongoing synthesis of phosphatidylinositol (PtdIns) 4-phosphate (PtdIns4P) by the Pik1 PtdIns 4-kinase and that modulation of the levels and cellular location of PtdIns4P leads to mislocalization of these proteins. Vps74 and GOLPH3 bind specifically to PtdIns4P, and a sulfate ion in a crystal structure of GOLPH3 indicates a possible phosphoinositide-binding site that is conserved in Vps74. Alterations in this site abolish phosphoinositide binding in vitro and Vps74 function in vivo. These results implicate Pik1 signaling in retention of Golgi-resident proteins via Vps74 and show that GOLPH3 family proteins are effectors of Golgi PtdIns 4-kinases.  相似文献   

4.
Norwalk virus is the prototype strain for members of the genus Norovirus in the family Caliciviridae, which are associated with epidemic gastroenteritis in humans. The nonstructural protein encoded in the N-terminal region of the first open reading frame (ORF1) of the Norwalk virus genome is analogous in gene order to proteins 2A and 2B of the picornaviruses; the latter is known for its membrane-associated activities. Confocal microscopy imaging of cells transfected with a vector plasmid that provided expression of the entire Norwalk virus N-terminal protein (amino acids 1 to 398 of the ORF1 polyprotein) showed colocalization of this protein with cellular proteins of the Golgi apparatus. Furthermore, this colocalization was characteristically associated with a visible disassembly of the Golgi complex into discrete aggregates. Deletion of a predicted hydrophobic region (amino acids 360 to 379) in a potential 2B-like (2BL) region (amino acids 301 to 398) near the C terminus of the Norwalk virus N-terminal protein reduced Golgi colocalization and disassembly. Confocal imaging was conducted to examine the expression characteristics of fusion proteins in which the 2BL region from the N-terminal protein of Norwalk virus (a genogroup I norovirus) or MD145 (a genogroup II norovirus) was fused to the C terminus of enhanced green fluorescent protein. Expression of each fusion protein in cells showed evidence for its colocalization with the Golgi apparatus. These data indicate that the N-terminal protein of Norwalk virus interacts with the Golgi apparatus and may play a 2BL role in the induction of intracellular membrane rearrangements associated with positive-strand RNA virus replication in cells.  相似文献   

5.
Phosphatidylinositol 4-kinases (PI4Ks) regulate vesicle-mediated export from the Golgi apparatus via phosphatidylinositol 4-phosphate (PtdIns4P) binding effector proteins that control vesicle budding reactions and regulate membrane dynamics. Evidence has emerged from the characterization of Golgi PI4K effectors that vesicle budding and lipid dynamics are tightly coupled via a regulatory network that ensures that the appropriate membrane composition is established before a transport vesicle buds from the Golgi. An important hub of this network is protein kinase D, which regulates the activity of PI4K and several PtdIns4P effectors that control sphingolipid and sterol content of Golgi membranes. Other newly identified PtdIns4P effectors include Vps74/GOLPH3, a phospholipid flippase called Drs2 and Sec2, a Rab guanine nucleotide exchange factor (GEF). These effectors orchestrate membrane transformation events facilitating vesicle formation and targeting. In this review, we discuss how PtdIns4P signaling is integrated with membrane biosynthetic and vesicle budding machineries to potentially coordinate these crucial functions of the Golgi apparatus.  相似文献   

6.
Endocytosis is involved in DNA uptake in yeast   总被引:1,自引:0,他引:1  
The structurally related mammalian alpha and beta isoforms of phosphatidylinositol (PtdIns) transfer protein (PITP) bind reversibly a single phospholipid molecule, preferably PtdIns or phosphatidylcholine (PtdCho), and transport that lipid between membrane surfaces. PITPbeta, but not PITPalpha, is reported extensively in the scientific literature to exhibit the additional capacity to bind and transport sphingomyelin (CerPCho). We undertook a detailed investigation of the lipid binding and transfer specificity of the soluble mammalian PITP isoforms. We employed a variety of donor and acceptor membrane lipid compositions to determine the sensitivity of recombinant rat PITPalpha and PITPbeta isoforms toward PtdIns, PtdCho, CerPCho, and phosphatidate (PtdOH). Results indicated often striking differences in protein-phospholipid and protein-membrane interactions. We demonstrated unequivocally that both isoforms were capable of binding and transferring CerPCho; we confirmed that the beta isoform was the more active. The order of transfer specific activity was similar for both isoforms: PtdIns>PtdCho>CerPCho>PtdOH. Independently, we verified the binding of CerPCho to both isoforms by showing an increase in holoprotein isoelectric point following the exchange of protein-bound phosphatidylglycerol for membrane-associated CerPCho. We conclude that PITPalpha and PITPbeta are able to bind and transport glycero- and sphingophospholipids.  相似文献   

7.
8.
In this report, we characterize GIV (Galpha-interacting vesicle-associated protein), a novel protein that binds members of the Galpha(i) and Galpha subfamilies of heterotrimeric G proteins. The Galpha(s) interaction site was mapped to an 83-amino acid region of GIV that is enriched in highly charged amino acids. BLAST searches revealed two additional mammalian family members, Daple and an uncharacterized protein, FLJ00354. These family members share the highest homology at the Galpha binding domain, are homologous at the N terminus and central coiled coil domain but diverge at the C terminus. Using affinity-purified IgG made against two different regions of the protein, we localized GIV to COPI, endoplasmic reticulum (ER)-Golgi transport vesicles concentrated in the Golgi region in GH3 pituitary cells and COS7 cells. Identification as COPI vesicles was based on colocalization with beta-COP, a marker for these vesicles. GIV also codistributes in the Golgi region with endogenous calnuc and the KDEL receptor, which are cis Golgi markers and with Galpha(i3)-yellow fluorescent protein expressed in COS7 cells. By immunoelectron microscopy, GIV colocalizes with beta-COP and Galpha(i3) on vesicles found in close proximity to ER exit sites and to cis Golgi cisternae. In cell fractions prepared from rat liver, GIV is concentrated in a carrier vesicle fraction (CV2) enriched in ER-Golgi transport vesicles. beta-COP and several Galpha subunits (Galpha(i1-3), Galpha(s)) are also most enriched in CV2. Our results demonstrate the existence of a novel Galpha-interacting protein associated with COPI transport vesicles that may play a role in Galpha-mediated effects on vesicle trafficking within the Golgi and/or between the ER and the Golgi.  相似文献   

9.
BACKGROUND: Phosphoinositides are required for the recruitment of many proteins to both the plasma membrane and the endosome; however, their role in protein targeting to other organelles is less clear. The pleckstrin homology (PH) domains of oxysterol binding protein (OSBP) and its relatives have been shown to bind to the Golgi apparatus in yeast and mammalian cells. Previous in vitro binding studies identified phosphatidylinositol (PtdIns) (4)P and PtdIns(4,5)P(2) as candidate ligands, but it is not known which is recognized in vivo and whether phosphoinositide specificity can account for Golgi-specific targeting. RESULTS: We have examined the distribution of GFP fusions to the PH domain of OSBP and to related PH domains in yeast strains carrying mutations in individual phosphoinositide kinases. We find that Golgi targeting requires the activity of the PtdIns 4-kinase Pik1p but not phosphorylation of PtdIns at the 3 or 5 positions and that a PH domain specific for PtdIns(4,5)P(2) is targeted exclusively to the plasma membrane. However, a mutant version of the OSBP PH domain that does not bind phosphoinositides in vitro still shows some targeting in vivo. This targeting is independent of Pik1p but dependent on the Golgi GTPase Arf1p. CONCLUSIONS: Phosphorylation of PtdIns at the 4 position but not conversion to PtdIns(4,5)P(2) contributes to recruitment of PH domains to the Golgi apparatus. However, potential phosphoinositide ligands for these PH domains are not restricted to the Golgi, and the OSBP PH domain also recognizes a second determinant that is ARF dependent, indicating that organelle specificity reflects a combinatorial interaction.  相似文献   

10.
In the budding yeast Saccharomyces cerevisiae, phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is synthesized by a single phosphatidylinositol 3-phosphate 5-kinase, Fab1. Cells deficient in PtdIns(3,5)P2 synthesis exhibit a grossly enlarged vacuole morphology, whereas increased levels of PtdIns(3,5)P2 provokes the formation of multiple small vacuoles, suggesting a specific role for PtdIns(3,5)P2 in vacuole size control. Genetic studies have indicated that Fab1 kinase is positively regulated by Vac7 and Vac14; deletion of either gene results in ablation of PtdIns(3,5)P2 synthesis and the formation of a grossly enlarged vacuole. More recently, a suppressor of vac7Delta mutants was identified and shown to encode a putative phosphoinositide phosphatase, Fig4. We demonstrate that Fig4 is a magnesium-activated PtdIns(3,5)P2-selective phosphoinositide phosphatase in vitro. Analysis of a Fig4-GFP fusion protein revealed that the Fig4 phosphatase is localized to the limiting membrane of the vacuole. Surprisingly, in the absence of Vac14, Fig4-GFP no longer localizes to the vacuole. However, Fig4-GFP remains localized to the grossly enlarged vacuoles of vac7 deletion mutants. Consistent with these observations, we found that Fig4 physically associates with Vac14 in a common membrane-associated complex. Our studies indicate that Vac14 both positively regulates Fab1 kinase activity and directs the localization/activation of the Fig4 PtdIns(3,5)P2 phosphatase.  相似文献   

11.
The Saccharomyces cerevisiae Wbp1 protein is an endoplasmic reticulum (ER), type I transmembrane protein which contains a cytoplasmic dilysine (KKXX) motif. This motif has previously been shown to direct Golgi-to-ER retrieval of type I membrane proteins in mammalian cells (Jackson, M. R., T. Nilsson, and P. A. Peterson. 1993. J. Cell Biol. 121: 317-333). To analyze the role of this motif in yeast, we constructed a SUC2-WBP1 chimera consisting of the coding sequence for the normally secreted glycoprotein invertase fused to the coding sequence of the COOH terminus (including the transmembrane domain and 16-amino acid cytoplasmic tail) of Wbplp. Carbohydrate analysis of the invertase-Wbp1 fusion protein using mannose linkage-specific antiserum demonstrated that the fusion protein was efficiently modified by the early Golgi initial alpha 1,6 mannosyltransferase (Och1p). Subcellular fractionation revealed that > 90% of the alpha 1,6 mannose-modified fusion protein colocalized with the ER (Wbp1p) and not with the Golgi Och1p-containing compartment or other membrane fractions. Amino acid changes within the dily sine motif (KK-->QK, KQ, or QQ) did not change the kinetics of initial alpha 1,6 mannose modification of the fusion protein but did dramatically increase the rate of modification by more distal Golgi (elongating alpha 1,6 and alpha 1,3) mannosyltransferases. These mutant fusion proteins were then delivered directly from a late Golgi compartment to the vacuole, where they were proteolytically cleaved in a PEP4-dependent manner. While amino acids surrounding the dilysine motif played only a minor role in retention ability, mutations that altered the position of the lysines relative to the COOH terminus of the fusion protein also yielded a dramatic defect in ER retention. Collectively, our results indicate that the KKXX motif does not simply retain proteins in the ER but rather directs their rapid retrieval from a novel, Och1p-containing early Golgi compartment. Similar to observations in mammalian cells, it is the presence of two lysine residues at the appropriate COOH-terminal position which represents the most important features of this sorting determinant.  相似文献   

12.
The mammalian p21 ras proteins contain a 20-amino acid region that is highly divergent, in contrast to the strong sequence conservation that is common to other regions of these proteins. This major variable region is located near the C terminus just upstream from a conserved cysteine residue that is required for post-translational processing, membrane localization and transforming activity of the proteins. We have now used the viral oncogene (v-rasH) of Harvey sarcoma virus to study the major variable region by deleting or duplicating parts of the gene. Reducing this region to five amino acids or increasing it to 50 amino acids has relatively little effect on the capacity of the gene to induce morphological transformation of NIH 3T3 cells. Assays of GTP binding, GTPase and autophosphorylating activities of such mutant v-rasH-encoded proteins synthesized in bacteria indicated that the sequences that encode these biochemical activities are located upstream from the major variable region. In the context of transformation, we propose that the region of sequence heterogeneity serves principally to connect the N-terminal catalytic domain with amino acids at the C terminus that are required to anchor the protein in the membrane.  相似文献   

13.
Gao C  Yu CK  Qu S  San MW  Li KY  Lo SW  Jiang L 《The Plant cell》2012,24(5):2086-2104
Endomembrane proteins (EMPs), belonging to the evolutionarily conserved transmembrane nine superfamily in yeast and mammalian cells, are characterized by the presence of a large lumenal N terminus, nine transmembrane domains, and a short cytoplasmic tail. The Arabidopsis thaliana genome contains 12 EMP members (EMP1 to EMP12), but little is known about their protein subcellular localization and function. Here, we studied the subcellular localization and targeting mechanism of EMP12 in Arabidopsis and demonstrated that (1) both endogenous EMP12 (detected by EMP12 antibodies) and green fluorescent protein (GFP)-EMP12 fusion localized to the Golgi apparatus in transgenic Arabidopsis plants; (2) GFP fusion at the C terminus of EMP12 caused mislocalization of EMP12-GFP to reach post-Golgi compartments and vacuoles for degradation in Arabidopsis cells; (3) the EMP12 cytoplasmic tail contained dual sorting signals (i.e., an endoplasmic reticulum export motif and a Golgi retention signal that interacted with COPII and COPI subunits, respectively); and (4) the Golgi retention motif of EMP12 retained several post-Golgi membrane proteins within the Golgi apparatus in gain-of-function analysis. These sorting signals are highly conserved in all plant EMP isoforms and, thus, likely represent a general mechanism for EMP targeting in plant cells.  相似文献   

14.
ExoS (453 amino acids) is a bi-functional type-III cytotoxin of Pseudomonas aeruginosa. Residues 96-233 comprise the Rho GTPase-activating protein (Rho GAP) domain, while residues 234-453 comprise the 14-3-3-dependent ADP-ribosyltransferase domain. Residues 51-72 represent a membrane localization domain (MLD), which targets ExoS to perinuclear vesicles within mammalian cells. YopE (219 amino acids) is a type-III cytotoxin of Yersinia that is also a Rho GAP. Residues 96-219 comprise the YopE Rho GAP domain. While the Rho GAP domains of ExoS and YopE share structural homology, unlike ExoS, the intracellular localization of YopE within mammalian cells has not been resolved and is the subject of this investigation. Deletion mapping showed that the N terminus of YopE was required for intracellular membrane localization of YopE in CHO cells. A fusion protein containing the N-terminal 84 amino acids of YopE localized to a punctate-perinuclear region in mammalian cells and co-localized with a fusion protein containing the MLD of ExoS. Residues 54-75 of YopE (termed YopE-MLD) were necessary and sufficient for intracellular localization in mammalian cells. The YopE-MLD localized ExoS to intracellular membranes and targeted ExoS to ADP-ribosylate small molecular weight membrane proteins as observed for native type-III delivered ExoS. These data indicate that the YopE MLD functionally complements the ExoS MLD for intracellular targeting in mammalian cells.  相似文献   

15.
16.
Murcha MW  Lister R  Ho AY  Whelan J 《Plant physiology》2003,131(4):1737-1747
Characterization of components 17 and 23 of the inner mitochondrial membrane translocase (TIM17:23) from Arabidopsis indicated that there were three genes present for TIM17 and TIM23 and two for TIM44. AtTIM17 differed from the yeast (Saccharomyces cerevisiae) and mammalian homologs in that two genes encoded proteins that were longer and one gene encoded a shorter protein. All Arabidopsis TIM23 predicted proteins appeared to lack the first 34 amino acids compared with yeast TIM23. All AtTIM17 and AtTIM23 genes were expressed but displayed different tissue and developmental profiles. Complementation of deletion mutants in yeast indicated that for AtTIM17, the extension at the C terminus not present in yeast had to be removed to achieve complementation, whereas for TIM23, a preprotein and amino acid transporter domain had to be present for complementation. Import assays with AtTIM17 and AtTIM23 indicated that they both contained internal signals for integration into the inner mitochondrial membrane in a membrane potential-dependent manner. The C terminus of imported AtTIM17-2 was susceptible to degradation by externally added protease with intact mitochondria. Removal of the 85 C-terminal amino acids resulted in import and full protection of the truncated protein. This suggests that the novel extension at the C terminus of AtTIM17-2 links the outer and inner membrane in a manner analogous to yeast TIM23.  相似文献   

17.
Mammalian PITPbeta (phosphatidylinositol transfer protein beta) is a 272-amino-acid polypeptide capable of transferring PtdIns, PtdCho and SM (sphingomyelin) between membrane bilayers. It has been reported that Ser262 present in the C-terminus of PITPbeta is constitutively phosphorylated and determines Golgi localization. We provide evidence for the expression of an sp (splice) variant of PITPbeta (PITPbeta-sp2) where the C-terminal 15 amino acids of PITPbeta-sp1 are replaced by an alternative C-terminus of 16 amino acids. PITPbeta-sp1 is the product of the first 11 exons, whereas PITPbeta-sp2 is a product of the first 10 exons followed by the twelfth exon--exon 11 being 'skipped'. Both splice variants are capable of PtdIns and PtdCho transfer, with PITPbeta-sp2 being unable to transport SM. PITPbeta is ubiquitously expressed, with the highest amounts of PITPbeta found in HL60 cells and in rat liver; HL60 cells express only PITPbeta-sp1, whereas rat liver expresses both sp variants in similar amounts. In both cell types, PITPbeta-sp1 is constitutively phosphorylated and both the PtdIns and PtdCho forms of PITPbeta-sp1 are present. In contrast, PITPbeta-sp2 lacks the constitutively phosphorylated Ser262 (replaced with glutamine). Nonetheless, both PITPbeta variants localize to the Golgi and, moreover, dephosphorylation of Ser262 of PITPbeta-sp1 does not affect its Golgi localization. The presence of PITPbeta sp variants adds an extra level of proteome complexity and, in rat liver, the single gene for PITPbeta gives rise to seven distinct protein species that can be resolved on the basis of their charge differences.  相似文献   

18.
The simple phosphoinositide PtdIns3P has been shown to control cell growth downstream of amino acid signalling and autophagy downstream of amino acid withdrawal. These opposing effects depend in part on the existence of distinct complexes of Vps34 (vacuolar protein sorting 34), the kinase responsible for the majority of PtdIns3P synthesis in cells: one complex is activated after amino acid withdrawal to induce autophagy and another regulates mTORC1 (mammalian target of rapamycin complex 1) activation when amino acids are present. However, lipid-dependent signalling almost always exhibits a spatial dimension, related to the site of formation of the lipid signal. In the case of PtdIns3P-regulated autophagy induction, recent data suggest that PtdIns3P accumulates in a membrane compartment dynamically connected to the endoplasmic reticulum that constitutes a platform for the formation of some autophagosomes. For PtdIns3P-regulated mTORC1 activity, a spatial context is not yet known: several possibilities can be envisaged based on the known effects of PtdIns3P on the endocytic system and on recent data suggesting that activation of mTORC1 depends on its localization on lysosomes.  相似文献   

19.
SEC12, a gene that is required for secretory, membrane, and vacuolar proteins to be transported from the endoplasmic reticulum to the Golgi apparatus, has been cloned from a genomic library by complementation of a sec12 ts mutation. Genetic analysis has shown that the cloned gene integrates at the SEC12 locus and that a null mutation at the locus is lethal. The DNA sequence predicts a protein of 471 amino acids containing a hydrophobic stretch of 19 amino acids near the COOH terminus. To characterize the gene product (Sec12p) in detail, a lacZ-SEC12 gene fusion has been constructed and a polyclonal antibody raised against the hybrid protein. The antibody recognizes Sec12p as a approximately 70-kD protein that sediments in a mixed membrane fraction that includes endoplasmic reticulum. Sec12p is not removed from the membrane fraction by treatment at high pH and high salt and is not degraded by exogenous protease unless detergent is present. Glycosylation of Sec12p during biogenesis is indicated by an electrophoretic mobility shift of the protein that is influenced by tunicamycin and by imposition of an independent secretory pathway block. We suggest that Sec12p is an integral membrane glycoprotein with a prominent domain that faces the cytoplasm where it functions to promote protein transport to the Golgi apparatus. In the process of transport, Sec12p itself may migrate to the Golgi apparatus and function in subsequent transport events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号