共查询到20条相似文献,搜索用时 15 毫秒
1.
Tufi R Panaretakis T Bianchi K Criollo A Fazi B Di Sano F Tesniere A Kepp O Paterlini-Brechot P Zitvogel L Piacentini M Szabadkai G Kroemer G 《Cell death and differentiation》2008,15(2):274-282
Some chemotherapeutic agents can elicit apoptotic cancer cell death, thereby activating an anticancer immune response that influences therapeutic outcome. We previously reported that anthracyclins are particularly efficient in inducing immunogenic cell death, correlating with the pre-apoptotic exposure of calreticulin (CRT) on the plasma membrane surface of anthracyclin-treated tumor cells. Here, we investigated the role of cellular Ca(2+) homeostasis on CRT exposure. A neuroblastoma cell line (SH-SY5Y) failed to expose CRT in response to anthracyclin treatment. This defect in CRT exposure could be overcome by the overexpression of Reticulon-1C, a manipulation that led to a decrease in the Ca(2+) concentration within the endoplasmic reticulum lumen. The combination of Reticulon-1C expression and anthracyclin treatment yielded more pronounced endoplasmic reticulum Ca(2+) depletion than either of the two manipulations alone. Chelation of intracellular (and endoplasmic reticulum) Ca(2+), targeted expression of the ligand-binding domain of the IP(3) receptor and inhibition of the sarco-endoplasmic reticulum Ca(2+)-ATPase pump reduced endoplasmic reticulum Ca(2+) load and promoted pre-apoptotic CRT exposure on the cell surface, in SH-SY5Y and HeLa cells. These results provide evidence that endoplasmic reticulum Ca(2+) levels control the exposure of CRT. 相似文献
2.
An ATP-dependent transport system which is active at concentrations of free Ca2+ in the submicromolar range has been identified in adipocyte plasma membranes. The system appears to represent the functional component of the high affinity insulin-sensitive calcium-stimulated, magnesium-dependent adenosine triphosphatase preveiously described in the same preparation (Pershadsingh, H. A., and McDonald, J. M. (1979) Nature 281, 495-497). This ATP-dependent Ca2+ transport pump was stimulated approximately 3-fold by the Ca2+-dependent regulatory protein, calmodulin. This effect was confined to the plasma membrane since a similar effect was undetectable in the fraction enriched in endoplasmic reticulum. Calmodulin stimulation was dose-dependent but saturable with half-maximal activation occurring at 0.72 microgram/ml (43 nM). Calmodulin appeared to stimulate the system primarily by decreasing the apparent half-maximal saturation constant for free Ca2+ from 0.20 +/- 0.04 microM to 0.07 +/- 0.01 microM (n = 3). The Hill coefficient increased from 1.6 +/- 0.2 to 3.2 +/- 0.6 (n = 3), thus showing an increased positive cooperativity which allows the pump to be activated by an exceedingly narrow Ca2+ threshold in the presence of calmodulin. The calmodulin stimulation of the plasma membrane Ca2+ extrusion pump in adipocytes, working in opposition to metabolic signals which increase cytoplasmic Ca2+, could constitute a self-regulating negative feedback device for maintaining a low steady state level of intracellular Ca2+. This feedback system may be of critical importance in regulation of cellular metabolism by insulin. 相似文献
3.
myo-Inositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes. 下载免费PDF全文
D M Delfert S Hill H A Pershadsingh W R Sherman J M McDonald 《The Biochemical journal》1986,236(1):37-44
The effects of myo-inositol 1,4,5-trisphosphate (IP3) on Ca2+ uptake and release from isolated adipocyte endoplasmic reticulum and plasma membrane vesicles were investigated. Effects of IP3 were initially characterized using an endoplasmic reticulum preparation with cytosol present (S1-ER). Maximal and half-maximal effects of IP3 on Ca2+ release from S1-ER vesicles occurred at 20 microM- and 7 microM-IP3, respectively, in the presence of vanadate which prevents the re-uptake of released Ca2+ via the endoplasmic reticulum Ca2+ pump. At saturating IP3 concentrations, Ca2+ release in the presence of vanadate was 20% of the exchangeable Ca2+ pool. IP3-induced release of Ca2+ from S1-ER was dependent on extravesicular free Ca2+ concentration with maximal release occurring at 0.13 microM free Ca2+. At 20 microM-IP3 there was no effect on the initial rate of Ca2+ uptake by S1-ER. IP3 promoted Ca2+ release from isolated endoplasmic reticulum vesicles (cytosol not present) to a similar level as compared with S1-ER. Addition of cytosol to isolated endoplasmic reticulum vesicles did not affect IP3-induced Ca2+ release. The endoplasmic reticulum preparation was further fractionated into heavy and light vesicles by differential centrifugation. Interestingly, the heavy fraction, but not the light fraction, released Ca2+ when challenged with IP3. IP3 (20 microM) did not promote Ca2+ release from plasma membrane vesicles and had no effect on the (Ca2+ + Mg2+)-ATPase activity or on the initial rate of ATP-dependent Ca2+ uptake by these vesicles. These results support the concept that IP3 acts exclusively at the endoplasmic reticulum to promote Ca2+ release. 相似文献
4.
Betty L. Black Jay M. McDonald Leonard Jarett 《Archives of biochemistry and biophysics》1980,199(1):92-102
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme. 相似文献
5.
The steady-state levels of Ca2+ within the endoplasmic reticulum (ER) and the transport of 45Ca2+ into isolated ER of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. The Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the ER was measured using the Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the lumen of the ER was determined by the fluorescence-ratio method to be at least 3 M. Transport of 45Ca2+ into the ER was studied in microsomal fractions isolated from aleurone layers incubated in the presence and absence of gibberellic acid (GA3) and Ca2+. Isopycinic sucrose density gradient centrifugation of microsomal fractions isolated from aleurone layers or protoplasts separates ER from tonoplast and plasma membranes but not from the Golgi apparatus. Transport of 45Ca2+ occurs primarily in the microsomal fraction enriched in ER and Golgi. Using monensin and heat-shock treatments to discriminate between uptake into the ER and Golgi, we established that 45Ca2+ transport was into the ER. The sensitivity of 45Ca2+ transport to inhibitors and the Km of 45Ca2+ uptake for ATP and Ca2+ transport in the microsomal fraction of barley aleurone cells. The rate of 45Ca2+ transport is stimulated several-fold by treatment with GA3. This effect of GA3 is mediated principally by an effect on the activity of the Ca2+ transporter rather than on the amount of ER.Abbreviations CCR
cytochrome-c reductase
- DCCD
dicyclohexylcarbodiimide
- EGTA
ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid
- ER
endoplasmic reticulum
- FCCP
carbonylcyanide p-trifluoromethoxyphenyl hydrazone
- GA3
gibberellic acid
- IDPase
inosine diphosphatase
- Mon
monensin 相似文献
6.
The interactions of Cd2+ with active Ca2+ transport systems in rat intestinal epithelial cells have been investigated. ATP-driven Ca2+ transport in basolateral plasma membrane vesicles was inhibited by Cd2+ with an I50 value of 1.6 nM free Cd2+ at 1 microM free Ca2+, using EGTA and HEEDTA to buffer Ca2+ and Cd2+ concentrations, respectively. The inhibition was competitive in nature since the Km value of Ca2+ increased with increasing Cd2+ concentrations while the Vmax remained constant. Cd2+ had similar effects on ATP-dependent Ca2+ uptake by permeabilized enterocytes, indicating that non-mitochondrial and mitochondrial Ca2+ stores are also inhibited by nanomolar concentrations of Cd2+. We conclude that ATP-driven Ca2+ transport systems are the most sensitive elements so far reported in Cd2+ intoxication. 相似文献
7.
Hassdenteufel S Schäuble N Cassella P Leznicki P Müller A High S Jung M Zimmermann R 《FEBS letters》2011,585(21):3485-3490
Cytosolic components and pathways have been identified that are involved in inserting tail-anchored (TA) membrane proteins into the yeast or mammalian endoplasmic reticulum (ER) membrane. Searching for regulatory mechanisms of TA protein biogenesis, we found that Ca(2+)-calmodulin (CaM) inhibits the insertion of TA proteins into mammalian ER membranes and that this inhibition is prevented by trifluoperazine, a CaM antagonist that interferes with substrate binding of Ca(2+)-CaM. The effects of Ca(2+)-CaM on cytochrome b(5) and Synaptobrevin 2 suggest a direct interaction between Ca(2+)-CaM and TA proteins. Thus, CaM appears to regulate TA insertion into the ER membrane in a Ca(2+) dependent manner. 相似文献
8.
Anion dependence of Ca2+ transport and (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase in rat pancreatic endoplasmic reticulum 总被引:2,自引:0,他引:2
T P Kemmer E Bayerd?rffer H Will I Schulz 《The Journal of biological chemistry》1987,262(28):13758-13764
Anion dependence of (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase and its phosphorylated intermediate have been characterized in both "intact" and "broken" vesicles from endoplasmic reticulum of rat pancreatic acinar cells using adenosine 5'-[gamma-32P] triphosphate ([gamma-32P]ATP). In intact vesicles (Ca2+ + K+)-Mg2+-ATPase activity was higher in the presence of Cl- or Br- as compared to NO3-, SCN-, cyclamate-, SO4(2-) or SO3(2-). Incorporation of 32P from [gamma-32P]ATP into the 100-kDa intermediate of this Ca2+ATPase was also higher in the presence of Cl-, Br-, NO3- or SCN- as compared to cyclamate-, SO4(2-) or SO3(2-). When the membrane permeability barrier to anions was abolished by breaking vesicle membrane with the detergent Triton X-100 (0.015%) (Ca2+ + K+)-Mg2+ATPase activity in the presence of weakly permeant anions, such as SO4(2-) and cyclamate-, increased to the level obtained with Cl-. However, 32P incorporation into 100-kDa protein was still higher in the presence of Cl- as compared to cyclamate-, indicating a direct effect of Cl- on the Ca2+ATPase molecule. The anion transport blocker 4,4-diisothiocyanostilbene-2,2-disulfonate (DIDS) inhibited (Ca2+ + K+)-Mg2+ATPase activity to about 10% of the Cl- stimulation level, irrespective of the sort of anions present in both intact and broken vesicles. This indicates a direct effect of DIDS on (Ca2+ + K+)-Mg2+ATPase. K+ ionophore valinomycin influenced (Ca2+ + K+)-Mg2+ATPase activity according to the actual K+ gradient: Ko+ greater than Ki+ caused inhibition, Ko+ less than Ki+ caused stimulation. From these results we conclude that Ca2+ transport into endoplasmic reticulum is coupled to ion movements which must occur to maintain electroneutrality. 相似文献
9.
Recent data have revealed an unexpected role of Bcl-2 in modulating the steady-state levels and agonist-dependent fluxes of Ca(2+) ions. Direct monitoring of endoplasmic reticulum (ER) Ca(2+) concentration with recombinant probes reveals a lower state of filling in Bcl-2-overexpressing cells and a higher leak rate from the organelle. The broader set of indirect data using cytosolic probes reveals a more complex scenario, as in many cases no difference was detected in the Ca(2+) content of the intracellular pools. At the same time, Ca(2+) signals have been shown to affect important checkpoints of the apoptotic process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the data on the effect of Bcl-2 on [Ca(2+)](er), (ii) the functional significance of the Ca(2+)-signalling alteration and (iii) the current insight into the possible mechanisms of this effect. 相似文献
10.
Although many cell functions are regulated by Ca(2+) oscillations induced by a cyclic release of Ca(2+) from intracellular Ca(2+) stores, the pacemaker mechanism of Ca(2+) oscillations remains to be explained. Using green fluorescent protein-based Ca(2+) indicators that are targeted to intracellular Ca(2+) stores, the endoplasmic reticulum (ER) and mitochondria, we found that Ca(2+) shuttles between the ER and mitochondria in phase with Ca(2+) oscillations. Following agonist stimulation, Ca(2+) release from the ER generated the first Ca(2+) oscillation and loaded mitochondria with Ca(2+). Before the second Ca(2+) oscillation, Ca(2+) release from the mitochondria by means of the Na(+)/Ca(2+) exchanger caused a gradual increase in cytoplasmic Ca(2+) concentration, inducing a regenerative ER Ca(2+) release, which generated the peak of Ca(2+) oscillation and partially reloaded the mitochondria. This sequence of events was repeated until mitochondrial Ca(2+) was depleted. Thus, Ca(2+) shuttling between the ER and mitochondria may have a pacemaker role in the generation of Ca(2+) oscillations. 相似文献
11.
H A Pershadsingh R D Gale D M Delfert J M McDonald 《Biochemical and biophysical research communications》1986,135(3):934-941
Increased membrane permeability (conductance) that is specific for K+ and directly activated by Ca2+ ions, has been identified in isolated adipocyte plasma membranes using the K+ analogue, 86Rb+. Activation of these K+ conductance pathways (channels) by free Ca2+ was concentration dependent with a half-maximal effect occurring at 32 +/- 4 nM free Ca2+ (n = 7). Addition of calmodulin further enhanced the Ca2+ activating effect on 86Rb+ uptake (K+ channel activity). Ca2+-dependent 86Rb+ uptake was inhibited by tetraethylammonium ion and low pH. It is concluded that the adipocyte plasma membrane possesses K+ channels that are activated by Ca2+ and amplified by calmodulin. 相似文献
12.
Mandal PK Mandal A Ahearn GA 《Journal of experimental zoology. Part A, Comparative experimental biology》2005,303(7):515-526
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol. 相似文献
13.
Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum 总被引:1,自引:0,他引:1
We analyzed the role of inositol 1,4,5-trisphosphate-induced Ca(2+) release from the endoplasmic reticulum (ER) (i) in powering mitochondrial Ca(2+) uptake and (ii) in maintaining a sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)). For this purpose, we expressed in HeLa cells aequorin-based Ca(2+)-sensitive probes targeted to different intracellular compartments and studied the effect of two agonists: histamine, acting on endogenous H(1) receptors, and glutamate, acting on co-transfected metabotropic glutamate receptor (mGluR1a), which rapidly inactivates through protein kinase C-dependent phosphorylation and thus causes transient inositol 1,4,5-trisphosphate production. Glutamate induced a transient [Ca(2+)](c) rise and drop in ER luminal [Ca(2+)] ([Ca(2+)](er)), and then the ER refilled with [Ca(2+)](c) at resting values. With histamine, [Ca(2+)](c) after the initial peak stabilized at a sustained plateau, and [Ca(2+)](er) decreased to a low steady-state value. In mitochondria, histamine evoked a much larger mitochondrial Ca(2+) response than glutamate ( approximately 15 versus approximately 65 microm). Protein kinase C inhibition, partly relieving mGluR1a desensitization, reestablished both the [Ca(2+)](c) plateau and the sustained ER Ca(2+) release and markedly increased the mitochondrial Ca(2+) response. Conversely, mitochondrial Ca(2+) uptake evoked by histamine was drastically reduced by very transient ( approximately 2-s) agonist applications. These data indicate that efficient mitochondrial Ca(2+) uptake depends on the preservation of high Ca(2+) microdomains at the mouth of ER Ca(2+) release sites close to mitochondria. This in turn depends on continuous Ca(2+) release balanced by Ca(2+) reuptake into the ER and maintained by Ca(2+) influx from the extracellular space. 相似文献
14.
Thioridazine inhibits the activity of the synaptic plasma membrane Ca(2+)-ATPase from pig brain and slightly decreases the rate of Ca(2+) accumulation by synaptic plasma membrane vesicles in the absence of phosphate. However, in the presence of phosphate, thioridazine increases the rate of Ca(2+) accumulation into synaptic plasma membrane vesicles. Phosphate anions diffuse through the membrane and form calcium phosphate crystals, reducing the free Ca(2+) concentration inside the vesicles and the rate of Ca(2+) leak. The higher levels of Ca(2+) accumulation obtained in the presence of thioridazine could be explained by a reduction of the rate of slippage on the plasma membrane ATPase. 相似文献
15.
Rapoport TA 《The FEBS journal》2008,275(18):4471-4478
A decisive step in the biosynthesis of many eukaryotic proteins is their partial or complete translocation across the endoplasmic reticulum membrane. A similar process occurs in prokaryotes, except that proteins are transported across or are integrated into the plasma membrane. In both cases, translocation occurs through a protein-conducting channel that is formed from a conserved, heterotrimeric membrane protein complex, the Sec61 or SecY complex. Structural and biochemical data suggest mechanisms that enable the channel to function with different partners, to open across the membrane and to release laterally hydrophobic segments of membrane proteins into lipid. 相似文献
16.
Jerry R. Colca Nirmala Kotagal Paul E. Lacy Michael L. McDaniel 《生物化学与生物物理学报:生物膜》1983,729(2):176-184
The properties of active or ATP-dependent calcium transport by islet-cell endoplasmic reticulum and plasma membrane-enriched subcellular fractions were directly compared. These studies indicate that the active calcium transport systems of the two membranes are fundamentally distinct. In contrast to calcium uptake by the endoplasmic reticulum-enriched fraction, calcium uptake by islet-cell plasma membrane-enriched vesicles exhibited a different pH optimum, was not sustained by oxalate, and showed an approximate 30-fold greater affinity for ionized calcium. A similar difference in affinity for calcium was exhibited by the Ca2+-stimulated ATPase activities which are associated with these islet-cell subcellular fractions. Consistent with the effects of calmodulin on calcium transport, calmodulin stimulated Ca2+-ATPase in the plasma membranes, but did not increase calcium-stimulated ATPase activity in the endoplasmic reticulum membranes. The physiological significance of the differences observed in calcium transport by the endoplasmic reticulum and plasma membrane fractions relative to the regulation of insulin secretion by the islets of Langerhans is discussed. 相似文献
17.
The so-called anticalmodulins fluphenazine, calmidazolium, and compound 48/80 inhibit the Ca2+- transport system of the endoplasmic reticulum 总被引:1,自引:0,他引:1
We present evidence that a Ca2+- transport system of the endoplasmic reticulum with the "mitotic" Ca2+- ATPase as an essential component is another target for the anticalmodulin drugs fluphenazine, calmidazolium, and compound 48/80. Furthermore we show by affinity chromatography that there is a direct interaction between the solubilized Ca2+- ATPase and fluphenazine. Since the Ca2+- uptake system as well as the solubilized Ca2+- ATPase are calmodulin- free, the effect of fluphenazine, calmidazolium and compound 48/80 may be understood as a result of the interaction between these drugs and the Ca2+- ATPase. We propose that there are calmodulin- like sequences in the molecule of the Ca2+- ATPase. The inhibitory effect of these three drugs can be then explained by their recognition of the calmodulin- like structures. 相似文献
18.
Hideki Shibata 《Bioscience, biotechnology, and biochemistry》2019,83(1):20-32
Apoptosis-linked gene 2 (ALG-2) is a Ca2+-binding protein with five repetitive EF-hand motifs, named penta-EF-hand (PEF) domain. It interacts with various target proteins and functions as a Ca2+-dependent adaptor in diverse cellular activities. In the cytoplasm, ALG-2 is predominantly localized to a specialized region of the endoplasmic reticulum (ER), called the ER exit site (ERES), through its interaction with Sec31A. Sec31A is an outer coat protein of coat protein complex II (COPII) and is recruited from the cytosol to the ERES to form COPII-coated transport vesicles. I will overview current knowledge of the physiological significance of ALG-2 in regulating ERES localization of Sec31A and the following adaptor functions of ALG-2, including bridging Sec31A and annexin A11 to stabilize Sec31A at the ERES, polymerizing the Trk-fused gene (TFG) product, and linking MAPK1-interacting and spindle stabilizing (MISS)-like (MISSL) and microtubule-associated protein 1B (MAP1B) to promote anterograde transport from the ER. 相似文献
19.
20.
Cook NL Viola HM Sharov VS Hool LC Schöneich C Davies MJ 《Free radical biology & medicine》2012,52(5):951-961
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) plays a critical role in Ca(2+) homeostasis via sequestration of this ion in the sarco/endoplasmic reticulum. The activity of this pump is inhibited by oxidants and impaired in aging tissues and cardiovascular disease. We have shown previously that the myeloperoxidase (MPO)-derived oxidants HOCl and HOSCN target thiols and mediate cellular dysfunction. As SERCA contains Cys residues critical to ATPase activity, we hypothesized that HOCl and HOSCN might inhibit SERCA activity, via thiol oxidation, and increase cytosolic Ca(2+) levels in human coronary artery endothelial cells (HCAEC). Exposure of sarcoplasmic reticulum vesicles to preformed or enzymatically generated HOCl and HOSCN resulted in a concentration-dependent decrease in ATPase activity; this was also inhibited by the SERCA inhibitor thapsigargin. Decomposed HOSCN and incomplete MPO enzyme systems did not decrease activity. Loss of ATPase activity occurred concurrent with oxidation of SERCA Cys residues and protein modification. Exposure of HCAEC, with or without external Ca(2+), to HOSCN or HOCl resulted in a time- and concentration-dependent increase in intracellular Ca(2+) under conditions that did not result in immediate loss of cell viability. Thapsigargin, but not inhibitors of plasma membrane or mitochondrial Ca(2+) pumps/channels, completely attenuated the increase in intracellular Ca(2+) consistent with a critical role for SERCA in maintaining endothelial cell Ca(2+) homeostasis. Angiotensin II pretreatment potentiated the effect of HOSCN at low concentrations. MPO-mediated modulation of intracellular Ca(2+) levels may exacerbate endothelial dysfunction, a key early event in atherosclerosis, and be more marked in smokers because of their higher SCN(-) levels. 相似文献