首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M Miyao  Y Inoue 《Biochemistry》1991,30(22):5379-5387
The Mn cluster that catalyzes photosynthetic oxygen evolution was removed from the photosystem II (PSII) complex by treating PSII membranes with 1.0 mM NH2OH with concomitant inactivation of oxygen evolution. The cluster was reconstituted by incubating the treated membranes with 1.0 mM Mn2+, 20 mM Ca2+, 10 microM 2,6-dichlorophenolindophenol, and Cl- under illumination with continuous or flashing light to restore the oxygen-evolving capacity. This light-dependent activation (photoactivation) of oxygen evolution did not occur to a significant extent at 3 mM Cl-, but markedly accelerated at higher Cl- concentrations without showing a saturation phenomenon even at 1 M Cl-. At 10 mM Cl- only about 10% of the oxygen-evolving activity before NH2OH treatment was restored by 5-min illumination with continuous light, whereas at 600 mM Cl- about 60% of the original activity was recovered. This acceleration resulted from at least two different actions of Cl-: (1) stabilization of the intermediate state involved in the photoactivation process and (2) increase in the quantum yield of photoactivation. The stabilization of the intermediate was saturated at about 150 mM Cl-, whereas the increase in yield did not show saturation. The Cl(-)-induced increase in quantum yield did not involve any changes in the affinity of either Mn2+ binding or Ca2+ binding for photoactivation, but was rather ascribed to a protective effect of Cl- against inhibition of photoactivation by high concentrations of Mn2+. We also found that removal of the extrinsic 33-kDa protein from the PSII complex increased the Cl- requirement for photoactivation.  相似文献   

2.
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a core complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the core complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II core complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.Abbreviations A 23187 ionophore that exchanges divalent cations with H+ - Chl chlorophyll - cyt cytochrome - DCPIP dichlorophenolindophenol - DPC diphenylcarbazide - EGTA ethyleneglycoltetraacetic acid - P680 the chlorophyll a reaction center of photosystem II - pheo pheophytin - PQ plastoquinone - PS photosystem - QA and QB primary and secondary plastoquinone electron acceptors of photosystem II - Sn (n=0, 1, 2, 3, 4) charge accumulating state of the oxygen evolving system - Signals IIvf, IIf and IIs epr-detectable free radicals associated with the oxidizing side of photosystem II - Z primary electron donor to the photosystem II reaction center The survey of literature for this review ended in September, 1984.  相似文献   

3.
Bryson DI  Doctor N  Johnson R  Baranov S  Haddy A 《Biochemistry》2005,44(19):7354-7360
Oxygen evolution by photosystem II (PSII) is activated by chloride and other monovalent anions. In this study, the effects of iodide on oxygen evolution activity were investigated using PSII-enriched membrane fragments from spinach. In the absence of Cl(-), the dependence of oxygen evolution activity on I(-) concentration showed activation followed by inhibition in both intact PSII and NaCl-washed PSII, which lacked the PsbP and PsbQ subunits. Using a substrate inhibition model, the range of values of the Michaelis constant K(M) in intact PSII (0.5-1.5 mM) was smaller than that in NaCl-washed PSII (1.5-5 mM), whereas values of the inhibition constant K(I) in intact PSII (9-17 mM) were larger than those in NaCl-washed PSII (1-4 mM). Studies of I(-) inhibition of Cl(-)-activated oxygen evolution in intact PSII revealed that I(-) was primarily an uncompetitive inhibitor, with uncompetitive constant K(i)' = 37 mM and Cl(-)-competitive constant K(i) > 200 mM. This result indicated that the activating Cl(-) must be bound for inhibition to take place, which is consistent with the substrate inhibition model for I(-) activation. The S(2) state multiline and g = 4.1 EPR signals in NaCl-washed PSII were examined in the presence of 3 and 25 mM NaI, corresponding to I(-)-activated and I(-)-inhibited conditions, respectively. The two S(2) state signals were observed at both I(-) concentrations, indicating that I(-) substitutes for Cl(-) in formation of the signals and that advancement to the S(2) state was not prevented by high I(-) concentrations. A model is presented that incorporates the results of this study, including the action of both chloride and iodide.  相似文献   

4.
5.
Photosystem II thylakoid particles possessing high rates of oxygen evolution, were shown to have a very simple polypeptide composition. Upon washing of these particles with 250 mM NaCl the oxygen evolution was inhibited up to 80% concomitant with a release of two polypeptides of 23 and 16 kDa. Readdition of the pure 23 kDa protein to the depleted thylakoids under low ionic strength reconstituted more than half of the lost activity. No stimulation was obtained with the 16 kDa protein alone or in combination with glycerol. The results give further strong evidence that the 23 kDa protein is an essential component in the oxygen evolving complex. The possible involvement of other proteins in this complex is discussed in light of the demonstrated simple polypeptide pattern of the photosystem II particles.  相似文献   

6.
The effect of Zn(2+) or Cu(2+) ions on Mn-depleted photosystem II (PS II) has been investigated using EPR spectroscopy. In Zn(2+)-treated and Cu(2+)-treated PS II, chemical reduction with sodium dithionite gives rise to a signal attributed to the plastosemiquinone, Q(A)(*)(-), the usual interaction with the non-heme iron being lost. The signal was identified by Q-band EPR spectroscopy which partially resolves the typical g-anisotropy of the semiquinone anion radical. Illumination at 200 K of the unreduced samples gives rise to a single organic free radical in Cu(2+)-treated PS II, and this is assigned to a monomeric chlorophyll cation radical, Chl a(*)(+), based on its (1)H-ENDOR spectrum. The Zn(2+)-treated PS II under the same conditions gives rise to two radical signals present in equal amounts and attributed to the Chl a(*)(+) and the Q(A)(*)(-) formed by light-induced charge separation. When the Cu(2+)-treated PS II is reduced by sodium ascorbate, at >/=77 K electron donation eliminates the donor-side radical leaving the Q(A)(*)(-) EPR signal. The data are explained as follows: (1) Cu(2+) and Zn(2+) have similar effects on PS II (although higher concentrations of Zn(2+) are required) causing the displacement of the non-heme Fe(2+). (2) In both cases chlorophyll is the electron donor at 200 K. It is proposed that the lack of a light-induced Q(A)(*)(-) signal in the unreduced Cu(2+)-treated sample is due to Cu(2+) acting as an electron acceptor from Q(A)(*)(-) at low temperature, forming the Cu(+) state and leaving the electron donor radical Chl a(*)(+) detectable by EPR. (3) The Cu(2+) in PS II is chemically reducible by ascorbate prior to illumination, and the metal can therefore no longer act as an electron acceptor; thus Q(A)(*)(-) is generated by illumination in such samples. (4) With dithionite, both the Cu(2+) and the quinone are reduced resulting in the presence of Q(A)(*)(-) in the dark. The suggested high redox potential of Cu(2+) when in the Fe(2+) site in PS II is in contrast to the situation in the bacterial reaction center where it has been shown in earlier work that the Cu(2+) is unreduced by dithionite. It cannot be ruled out however that Q(A)-Cu(2+) is formed and a magnetic interaction is responsible for the lack of the Q(A)(-) signal when no exogenous reductant is present. With this alternative possibility, the effects of reductants would be explained as the loss of Cu(2+) (due to formation of Cu(+)) leading to loss of the Cu(2+) from the Fe(2+) site due to the binding equilibrium. The quite different binding and redox behavior of the metal in the iron site in PS II compared to that of the bacterial reaction center is presumably a further reflection of the differences in the coordination of the iron in the two systems.  相似文献   

7.
Disease-related prion protein, PrPSc, can be distinguished from its normal cellular precursor, PrPC, by its detergent insolubility and partial resistance to proteolysis. Several studies have suggested that copper(II) ions can convert PrPC to a proteinase K-resistant conformation; however, interpretation of these studies is complicated by potential inhibition of proteinase K (PK) by copper(II) ions. Here we have examined directly the kinetic and equilibrium effects of copper(II) ions on PK activity using a simple synthetic substrate, p-nitrophenyl acetate. We show that at equilibrium two to three copper(II) ions bind stoichiometrically to PK and destroy its activity (Kd < 1 microM). This inhibition has two components, an initial reversible and weak binding phase and a slower, irreversible abolition of activity with a half-time of 6 min at saturating copper(II) ion concentrations. Copper(II) ions produce a similar biphasic inhibition of PK activity in the presence of brain homogenate but only when the copper(II) ion concentration exceeds that of the chelating components present in brain tissue. Under these conditions, the apparent resistance of PrPC to proteolysis by PK appears to be directly attributable to the inhibition of PK activity by copper(II) ions.  相似文献   

8.
In this report we demonstrate sulfite interaction with oxygen and PSII electron acceptors (ferricyanide and para-benzoquinone) during measurement of oxygen evolution in chloroplasts. Redox potentials of oxygen, ferricyanide and para-benzoquinone allow them to compete for sulfite. Without taking this into account, sulfite inhibition of oxygen evolution can be overestimated, since sulfite consumes oxygen and reduces ferricyanide or para-benzoquinone during the measurement. In order to correctly measure the rate of oxygen evolution in chloroplasts, it is necessary to avoid presence of sulfite during the measurement. After overcoming the artifact, mentioned above, we confirm the sulfite inhibition of oxygen evolution in chloroplasts but at a lesser extent than earlier reported. This, however, is a pretreatment effect.Abbreviations Chl Chlorophyll - EDTA Ethylenediamine Tetraacetic Acid - FeCN Potassium Ferricyanide - Hepes N-2-Hydroxyethylpiperazine-N1-2-ethanesulfonic acid - pBQ Para-benzoquinone - PSII photosystem II  相似文献   

9.
ESR studies of copper(II) complex ions   总被引:1,自引:0,他引:1  
  相似文献   

10.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.  相似文献   

11.
The mechanism by which suspension medium ions regulate the rate of photoinduced electron transport across photosystem II was investigated with ion permeabilized cells of the cyanobacterium Anacystis nidulans. Electron transport was measured as the reduction of the electroneutral acceptor dichlorophenol indophenol, whose surface concentration is independent of electrostatic membrane potential. Potassium salts stimulate photoinduced electron transport at low concentrations and inhibit it at higher concentrations. No inhibition is observed when an antichaotropic anion is associated with potassium, while the inhibition is more severe the stronger the chaotropic character of the anion. Neutralization of the surface charge by potassium ions ligated to negatively charged membrane sites at the cytoplasmic side is a prerequisite for the expression of the chaotropic inhibition of photosystem II electron transport.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenol indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DPC 1,5-diphenyl carbazide - FeCN ferricyanide anion - Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - PS photosystem - TEC3+ tris ethylene diamine cobalt cation  相似文献   

12.
13.
Biosorption equilibrium and kinetics of Cd(2+) and Cu(2+) ions on wheat straw, Triticum aestivum, in an aqueous system were investigated. Among the models tested, namely the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, the biosorption equilibrium for both Cd(2+) and Cu(2+) was best described by the Langmuir model. The Langmuir biosorption capacity for Cd(2+) was about 27% higher than that for Cu(2+). It was also found that biosorption of Cd(2+) and Cu(2+) by wheat straw followed second-order kinetics. The equilibrium amount of metal ions adsorbed onto the wheat straw increased with increasing of pH from 4.0 to 7.0, and the effect was more pronounced for Cd(2+) than for Cu(2+). The equilibrium adsorbed amount also increased with the initial concentration of the metal ions, as expected. On the other hand, an increase of temperature from 25 to 30 degrees C only enhanced the biosorption of Cd(2+) and Cu(2+) slightly. The apparent temperature independence and the strong pH dependence of the amount of metal ions adsorbed along with moderate mean free energies of biosorption (between 8.0 and 12.9 kJ mol(-1)) altogether indicate that biosorption of Cd(2+) and Cu(2+) by wheat straw might follow a chemisorption mechanism.  相似文献   

14.
A hypothesis is proposed to explain the function of Cl- in activating the oxygenevolving complex (OEC) of photosystem II (PS II), based on the results of recent 35Cl-NMR studies. The putative mechanism involves Cl- binding to two types of sites. An intrinsic site is suggested to be composed of three histidyl residues (His 332 and His 337 from D1 and His 337 D2). It is proposed that Cl- binding to this site accelerates the abstraction of H+ from water by raising the pKa's of the histidine imidazole groups. Cl- binding also stimulates the transfer of H+ from this intrinsic site to a set of extrinsic sites on the 33 kD extrinsic polypeptide. The extrinsic Cl- binding sites are suggested to involve four protein domains that are linked together by salt-bridge contacts. Chloride and H+ donated from the intrinsic site attack these intramolecular salt-bridges in a defined sequence, thereby exposing previously inaccessible Cl- and H+ binding sites and stimulating the oxidation of water. This hypothesis also proposes a possible structure for the Mn active site within the D1/D2 complex. Specific amino-acid residues that are likely to participate as Mn lignads are identified on the lumenal portions of the D1 and D2 proteins that are different from those in the L and M subunits of photosynthetic bacteria; the choice of these residues is based on the metal coordination chemistry of these residues, their location within the polypeptide chain, the regularity of their spacing, and their conservation through evolution. The catalytic Mn-binding residues are suggested to be D-61, E-65, E-92, E-98, D-103; D-308, E-329, E-342 and E-333 in D1, and H-62, E-70, H-88, E-97, D-101; E-313, D-334, E-338 and E-345 in D2. Finally, this hypothesis identifies sites on both D2 and the 33 kD extrinsic polypeptide that might be involved in high- and low-affinity Ca2+ binding.To whom correspondence should be addressed  相似文献   

15.
16.
The interaction of Cu(II) ions with native and denatured DNA as a function of ionic strength of the solution was studied by the equilibrium dialysis method. Graphical analysis of binding isotherms confirmed the occurrence of interstrand and intrastrand binding of Cu(II) with DNA and made possible determination of the respective binding constants. To facilitate interpretation of the data, a new molecular model of Cu(II)-DNA binding has been proposed, assuming interstrand intercalation of one Cu(II) ion between two GC pairs both in the successive even and odd groups of GC pairs, and interstrand binding of Cu(II) to the isolated GC pairs, with the exception of T-C-T and T-G-T sequences. In agreement with this model, the DNA-Cu(II) complex is most stable under the equilibrium with free Cu(II) ions at 4 degrees C, pH 6 when the molar ratio of GC pairs to Cu(II) ions bound interstrandially attains GC/Cuinter = 2 +/- 0.1.  相似文献   

17.
The Arabidopsis thaliana mutant psbo1 contains a point mutation in the psbO-1 gene (At5g66570) leading to the loss of expression of the PsbO-1 protein and overexpression of the PsbO-2 protein (Murakami, R., Ifuku, K., Takabayashi, A., Shikanai, T., Endo, T., and Sato, F. (2002) FEBS Lett. 523, 138-142). Previous characterization of fluorescence induction and decay kinetics by our laboratory documented defects on both the oxidizing and reducing sides of Photosystem II. Additionally, anomalous flash oxygen yield patterns indicated that the mutant contains a defective oxygen-evolving complex that appears to exhibit anomalously long-lived S(2) and S(3) oxidation states (Liu, H., Frankel, L. K., and Bricker, T. M. (2007) Biochemistry 46, 7607-7613). In this study, we have documented that the S(2) and S(3) states in psbo1 thylakoids decay very slowly. The total flash oxygen yield of the psbo1 mutant was also significantly reduced, as was its stability. Incubation of psbo1 thylakoids at high NaCl concentrations did not increase the rate of S(2) and S(3) state decay. The oxygen-evolving complexes of the mutant did, however, exhibit somewhat enhanced stability following this treatment. Incubation with CaCl(2) had a significantly more dramatic effect. Under this condition, both the S(2) and S(3) states of the mutant decayed at nearly the same rate as the wild type, and the total oxygen yield and its stability following CaCl(2) treatment were indistinguishable from that of the wild type. These results strongly suggest that the principal defect in the psbo1 mutant is an inability to effectively utilize the calcium associated with Photosystem II. We hypothesize that the PsbO-2 protein cannot effectively sequester calcium at the oxygen-evolving site.  相似文献   

18.
Photo-generated reactive oxygen species in herbicide-treated photosystem II were investigated by spin-trapping. While the production of .OH and O2-* was herbicide-independent, 1O2 with a phenolic was twice that with a urea herbicide. This correlates with the reported influence of these herbicides on the redox properties of the semiquinone QA-* and fits with the hypothesis that 1O2 is produced by charge recombination reactions that are stimulated by herbicide binding and modulated by the nature of the herbicide. When phenolic herbicides are bound, charge recombination at the level of P+*Pheo-* is thermodynamically favoured forming a chlorophyll triplet and hence 1O2. With urea herbicides this pathway is less favourable.  相似文献   

19.
The dark reaction of tris(hydroxymethyl)aminomethane (Tris) with the O2-evolving center of photosystem II (PSII) in the S1 state causes irreversible inhibition of O2 evolution. Similar inhibition is observed for several other amines: NH3, CH3NH2, (CH3)2NH, ethanolamine, and 2-amino-2-ethyl-1,3-propanediol. In PSII membranes, both depleted of the 17- and 23-kDa polypeptides and undepleted, the rate of reaction of Tris depends inversely upon the Cl- concentration. However, the rate of reaction of Tris is about 2-fold greater with PSII membranes depleted of the 17- and 23-kDa polypeptides than with undepleted PSII membranes. We have used low-temperature electron paramagnetic resonance (EPR) spectroscopy to study the effect of Tris on the oxidation state of the Mn complex in the O2-evolving center, to monitor the electron-donation reactions in Tris-treated samples, and to observe any loss of the Mn complex (forming Mn2+ ions) after Tris treatment. We find that Tris treatment causes loss of electron-donation ability from the Mn complex at the same rate as inhibition of O2 evolution and that Mn2+ ions are released. We conclude that Tris reduces the Mn complex to labile Mn2+ ions, without generating any kinetically stable, partially reduced intermediates, and that the reaction occurs at the Cl(-)-sensitive site previously characterized in studies of the reversible inhibition of O2 evolution by amines.  相似文献   

20.
Detailed comparative studies of flash induced oxygen evolution patterns in thylakoids from the thermophilic cyanobacterium Synechococcus elongatus (S. elongatus; also referred to as Thermosynechococcus elongatus) and from spinach led to the following results: (i) the miss parameter alpha of S. elongatus thylakoids exhibits a pronounced temperature dependence with a minimum of 7% at 25 degrees C and values of 17 and 10% at 3 and 35 degrees C, respectively, while for spinach thylakoids alpha decreases continuously from 18% at 35 degrees C down to 8% at 3 degrees C; (ii) at all temperatures, the double hit probability beta exceeds in S. elongatus the corresponding values of spinach by an increment Delta beta of about 3%; (iii) at 20 degrees C the slow relaxation of the oxidation states S(2) and S(3) is about 15 and 30 times, respectively, slower in S. elongatus than in spinach, while the reduction of these S states by tyrosine Y(D) is 2-3 times faster; (iv) the reaction S(0)Y(D)(ox) --> S(1)Y(D) is slower by a factor of 4 in S. elongatus as compared to spinach; and (v) the activation energies of S state dark relaxations in S. elongatus are all within a factor of 1.5 as compared to the previously reported values from spinach thylakoids [Vass, I., Deak, Z., and Hideg, E. (1990) Biochim. Biophys. Acta 1017, 63-69; Messinger, J., Schr?der, W. P., and Renger, G. (1993) Biochemistry 32, 7658-7668], but the difference between the activation energies of the slow S(2) and S(3) decays is significantly larger in S. elongatus than in spinach. These results are discussed in terms of differences between cyanobacteria and higher plants on the acceptor side of PSII and a shift of the redox potential of the couple Y(D)/Y(D)(ox). The obtained data are also suitable to address questions about effects of the redox state of Y(D) on the miss probability and the possibility of an S state dependent miss parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号