首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a new approach to obtain dominance estimates without using the full Henderson's mixed model equations (MMEs) related to an additive plus dominance animal model. This reduction could decrease substantially the computing time and hence its cost. In contrast to a procedure that we proposed before, the method developed in this paper does not require D(-1) and provides best linear unbiased prediction (BLUP) of genetic values that is close to that given by processing the full MMEs. In the previous study, we also elaborated an algorithm (denoted xi-REML) in order to approximate restricted maximum likelihood estimation of variance components via the expectation maximization (EM) algorithm. The xi-REML algorithm has been modified to be adapted to our new resolution approach. Through a numerical example, we show that there is a good agreement between REML-(EM), xi-REML and modified xi-REML estimates and that the latter algorithm is more efficient than our first proposition in terms of computing time and memory conservation.  相似文献   

2.
Genomic evaluation models can fit additive and dominant SNP effects. Under quantitative genetics theory, additive or “breeding” values of individuals are generated by substitution effects, which involve both “biological” additive and dominant effects of the markers. Dominance deviations include only a portion of the biological dominant effects of the markers. Additive variance includes variation due to the additive and dominant effects of the markers. We describe a matrix of dominant genomic relationships across individuals, D, which is similar to the G matrix used in genomic best linear unbiased prediction. This matrix can be used in a mixed-model context for genomic evaluations or to estimate dominant and additive variances in the population. From the “genotypic” value of individuals, an alternative parameterization defines additive and dominance as the parts attributable to the additive and dominant effect of the markers. This approach underestimates the additive genetic variance and overestimates the dominance variance. Transforming the variances from one model into the other is trivial if the distribution of allelic frequencies is known. We illustrate these results with mouse data (four traits, 1884 mice, and 10,946 markers) and simulated data (2100 individuals and 10,000 markers). Variance components were estimated correctly in the model, considering breeding values and dominance deviations. For the model considering genotypic values, the inclusion of dominant effects biased the estimate of additive variance. Genomic models were more accurate for the estimation of variance components than their pedigree-based counterparts.  相似文献   

3.

Background

Dominance effect may play an important role in genetic variation of complex traits. Full featured and easy-to-use computing tools for genomic prediction and variance component estimation of additive and dominance effects using genome-wide single nucleotide polymorphism (SNP) markers are necessary to understand dominance contribution to a complex trait and to utilize dominance for selecting individuals with favorable genetic potential.

Results

The GVCBLUP package is a shared memory parallel computing tool for genomic prediction and variance component estimation of additive and dominance effects using genome-wide SNP markers. This package currently has three main programs (GREML_CE, GREML_QM, and GCORRMX) and a graphical user interface (GUI) that integrates the three main programs with an existing program for the graphical viewing of SNP additive and dominance effects (GVCeasy). The GREML_CE and GREML_QM programs offer complementary computing advantages with identical results for genomic prediction of breeding values, dominance deviations and genotypic values, and for genomic estimation of additive and dominance variances and heritabilities using a combination of expectation-maximization (EM) algorithm and average information restricted maximum likelihood (AI-REML) algorithm. GREML_CE is designed for large numbers of SNP markers and GREML_QM for large numbers of individuals. Test results showed that GREML_CE could analyze 50,000 individuals with 400 K SNP markers and GREML_QM could analyze 100,000 individuals with 50K SNP markers. GCORRMX calculates genomic additive and dominance relationship matrices using SNP markers. GVCeasy is the GUI for GVCBLUP integrated with an existing software tool for the graphical viewing of SNP effects and a function for editing the parameter files for the three main programs.

Conclusion

The GVCBLUP package is a powerful and versatile computing tool for assessing the type and magnitude of genetic effects affecting a phenotype by estimating whole-genome additive and dominance heritabilities, for genomic prediction of breeding values, dominance deviations and genotypic values, for calculating genomic relationships, and for research and education in genomic prediction and estimation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-270) contains supplementary material, which is available to authorized users.  相似文献   

4.
Identity disequilibrium, ID, is the difference between joint identity by descent and the product of the separate probabilities of identity by descent for two loci. The effects of ID on the additive by additive (a*a) epistatic variance and joint dominance component between populations and in the additive, dominance and a*a variance within populations, including the effects on covariances of relatives within populations, were studied for finite monoecious populations. The effects are formulated in terms of three additive partitions, eta b, eta a and eta d, of the total ID, each of which increases from zero to a maximum at some generation dependent upon linkage and population size and decreases thereafter. eta d is about four times the magnitude of the other two but none is of any consequence except for tight linkage and very small populations. For single-generation bottleneck populations only eta d is not zero. With random mating of expanded populations eta b remains constant and eta a and eta d go to zero at a rate dependent upon linkage, very fast with free recombination. The contributions of joint dominance to the genetic components of variance within and between populations are entirely a function of the eta's while those of a*a variance to the components are functions mainly of the coancestry coefficient and only modified by the eta's. The contributions of both to the covariances of half-sibs, full-sibs and parent-offspring follow the pattern expected from their contributions to the genetic components of variance within populations except for minor terms which most likely are of little importance.  相似文献   

5.
The problem of assessing the relative calibrations and relative accuracies of a set of p instruments, each designed to measure the same characteristic on a common group of individuals is considered by using the EM algorithm. As shown, the EM algorithm provides a general solution for this problem. Its implementation is simple and in its most general form requires no extra iterative procedures within the M step. One important feature of the algorithm in this set up is that the error variance estimates are always positive. Thus, it can be seen as a kind of restricted maximization procedure. The expected information matrix for the maximum likelihood estimators is derived, upon which the large sample estimated covariance matrix for the maximum likelihood estimators can be computed. The problem of testing hypothesis about the calibration lines can be approached by using the Wald statistics. The approach is illustrated by re-analysing two data sets in the literature.  相似文献   

6.
Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield.  相似文献   

7.
Epistasis and Its Contribution to Genetic Variance Components   总被引:37,自引:9,他引:28       下载免费PDF全文
J. M. Cheverud  E. J. Routman 《Genetics》1995,139(3):1455-1461
We present a new parameterization of physiological epistasis that allows the measurement of epistasis separate from its effects on the interaction (epistatic) genetic variance component. Epistasis is the deviation of two-locus genotypic values from the sum of the contributing single-locus genotypic values. This parameterization leads to statistical tests for epistasis given estimates of two-locus genotypic values such as can be obtained from quantitative trait locus studies. The contributions of epistasis to the additive, dominance and interaction genetic variances are specified. Epistasis can make substantial contributions to each of these variance components. This parameterization of epistasis allows general consideration of the role of epistasis in evolution by defining its contribution to the additive genetic variance.  相似文献   

8.
In this article, we construct an approximate EM algorithm to estimate the parameters of a nonlinear mixed effects model. The iterative procedure can be viewed as an iterative method of moments procedure for estimating the variance components and an iterative reweighted least squares estimates for estimating the fixed effects. Therefore, it is valid without the normality assumptions on the random components. A computationally simple method of moments estimates of the model parameters are used as the starting values for our iterative procedure. A simulation study was conducted to compare the performances of the proposed procedure with the procedure proposed by Lindstrom and Bates (1990) for some normal models and nonnormal models.  相似文献   

9.
Summary Genetic association studies often investigate the effect of haplotypes on an outcome of interest. Haplotypes are not observed directly, and this complicates the inclusion of such effects in survival models. We describe a new estimating equations approach for Cox's regression model to assess haplotype effects for survival data. These estimating equations are simple to implement and avoid the use of the EM algorithm, which may be slow in the context of the semiparametric Cox model with incomplete covariate information. These estimating equations also lead to easily computable, direct estimators of standard errors, and thus overcome some of the difficulty in obtaining variance estimators based on the EM algorithm in this setting. We also develop an easily implemented goodness‐of‐fit procedure for Cox's regression model including haplotype effects. Finally, we apply the procedures presented in this article to investigate possible haplotype effects of the PAF‐receptor on cardiovascular events in patients with coronary artery disease, and compare our results to those based on the EM algorithm.  相似文献   

10.
Genetic models for quantitative traits of triploid endosperms are proposed for the analysis of direct gene effects, cytoplasmic effects, and maternal gene effects. The maternal effect is partitioned into maternal additive and dominance components. In the full genetic model, the direct effect is partitioned into direct additive and dominance components and high-order dominance component, which are the cumulative effects of three-allele interactions. If the high-order dominance effects are of no importance, a reduced genetic model can be used. Monte Carlo simulations were conducted in this study for demonstrating unbiasedness of estimated variance and covariance components from the MINQUE (0/1) procedure, which is a minimum norm quadratic unbiased estimation (MINQUE) method setting 0 for all the prior covariances and 1 for all the prior variances. Robustness of estimating variance and covariance components for the genetic models was tested by simulations. Both full and reduced genetic models are shown to be robust for estimating variance and covariance components under several situations of no specific effects. Efficiency of predicting random genetic effects for the genetic models by the MINQUE (0/1) procedure was compared with the best linear unbiased prediction (BLUP). A worked example is given to illustrate the use of the reduced genetic model for kernel growth characteristics in corn (Zea mays L.).  相似文献   

11.
Accurate and fast computation of quantitative genetic variance parameters is of great importance in both natural and breeding populations. For experimental designs with complex relationship structures it can be important to include both additive and dominance variance components in the statistical model. In this study, we introduce a Bayesian Gibbs sampling approach for estimation of additive and dominance genetic variances in the traditional infinitesimal model. The method can handle general pedigrees without inbreeding. To optimize between computational time and good mixing of the Markov chain Monte Carlo (MCMC) chains, we used a hybrid Gibbs sampler that combines a single site and a blocked Gibbs sampler. The speed of the hybrid sampler and the mixing of the single-site sampler were further improved by the use of pretransformed variables. Two traits (height and trunk diameter) from a previously published diallel progeny test of Scots pine (Pinus sylvestris L.) and two large simulated data sets with different levels of dominance variance were analyzed. We also performed Bayesian model comparison on the basis of the posterior predictive loss approach. Results showed that models with both additive and dominance components had the best fit for both height and diameter and for the simulated data with high dominance. For the simulated data with low dominance, we needed an informative prior to avoid the dominance variance component becoming overestimated. The narrow-sense heritability estimates in the Scots pine data were lower compared to the earlier results, which is not surprising because the level of dominance variance was rather high, especially for diameter. In general, the hybrid sampler was considerably faster than the blocked sampler and displayed better mixing properties than the single-site sampler.  相似文献   

12.
Henderson's mixed model equations system is generally required in a Gibbs sampling application. In two previous studies, we proposed two indirect solving approaches that give dominance values in an animal model context with no need to process all this system. The first one does not require D-1 and the second is based on processing the additive animal model residuals. In the present work, we show that these two methods can be handled iteratively. Since the Bayesian approach is now a widely used tool in estimation of genetic parameters, the main part of this work is devoted to a Gibbs sampling application that can be accelerated by means of the aforementioned indirect solving methods. Three replicates of a population data set are simulated in the paper to compare the applications and estimates. This shows effectively that the estimates given by implementing a Gibbs sampler with each of the two suggested solving methods are obtained with less computational time and are comparable to those given by considering the integral system, particularly when priors are more weighted.  相似文献   

13.
A Building Block Model for Quantitative Genetics   总被引:2,自引:2,他引:0       下载免费PDF全文
H. Tachida  C. C. Cockerham 《Genetics》1989,121(4):839-844
We introduce a quantitative genetic model for multiple alleles which permits the parameterization of the degree, D, of dominance of favorable or unfavorable alleles. We assume gene effects to be random from some distribution and independent of the D's. We then fit the usual least-squares population genetic model of additive and dominance effects in an infinite equilibrium population to determine the five genetic components--additive variance sigma 2 a, dominance variance sigma 2 d, variance of homozygous dominance effects d2, covariance of additive and homozygous dominance effects d1, and the square of the inbreeding depression h--required to treat finite populations and large populations that have been through a bottleneck or in which there is inbreeding. The effects of dominance can be summarized as functions of the average, D, and the variance, sigma 2 D. An important distinction arises between symmetrical and nonsymmetrical distributions of gene effects. With symmetrical distributions d1 = -d2/2 which is always negative, and the contribution of dominance to sigma 2 a is equal to d2/2. With nonsymmetrical distributions there is an additional contribution H to sigma 2 a and -H/2 to d1, the sign of H being determined by D and the skew of the distribution. Some numerical evaluations are presented for the normal and exponential distributions of gene effects, illustrating the effects of the number of alleles and of the variation in allelic frequencies. Random additive by additive (a*a) epistatic effects contribute to sigma 2 a and to the a*a variance, sigma 2/aa, the relative contributions depending on the number of alleles and the variation in allelic frequencies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A method for partitioning genetic variance estimated from twin data into additive and dominance variances was presented using Falconer's variance component model. The effects of dominance and environmental variances on a number of heritability estimates were also reviewed. A heritability estimate, based on the analysis of variance and the genetic variance estimates presented by HASEMAN and ELSTON and CHRISTIAN et al. which utilizes all available information from twin data, was proposed and discussed. This estimate seems to be the least affected by fluctuations in the magnitudes of dominance and environmental variances.  相似文献   

15.

Background

A better understanding of non-additive variance could lead to increased knowledge on the genetic control and physiology of quantitative traits, and to improved prediction of the genetic value and phenotype of individuals. Genome-wide panels of single nucleotide polymorphisms (SNPs) have been mainly used to map additive effects for quantitative traits, but they can also be used to investigate non-additive effects. We estimated dominance and epistatic effects of SNPs on various traits in beef cattle and the variance explained by dominance, and quantified the increase in accuracy of phenotype prediction by including dominance deviations in its estimation.

Methods

Genotype data (729 068 real or imputed SNPs) and phenotypes on up to 16 traits of 10 191 individuals from Bos taurus, Bos indicus and composite breeds were used. A genome-wide association study was performed by fitting the additive and dominance effects of single SNPs. The dominance variance was estimated by fitting a dominance relationship matrix constructed from the 729 068 SNPs. The accuracy of predicted phenotypic values was evaluated by best linear unbiased prediction using the additive and dominance relationship matrices. Epistatic interactions (additive × additive) were tested between each of the 28 SNPs that are known to have additive effects on multiple traits, and each of the other remaining 729 067 SNPs.

Results

The number of significant dominance effects was greater than expected by chance and most of them were in the direction that is presumed to increase fitness and in the opposite direction to inbreeding depression. Estimates of dominance variance explained by SNPs varied widely between traits, but had large standard errors. The median dominance variance across the 16 traits was equal to 5% of the phenotypic variance. Including a dominance deviation in the prediction did not significantly increase its accuracy for any of the phenotypes. The number of additive × additive epistatic effects that were statistically significant was greater than expected by chance.

Conclusions

Significant dominance and epistatic effects occur for growth, carcass and fertility traits in beef cattle but they are difficult to estimate precisely and including them in phenotype prediction does not increase its accuracy.  相似文献   

16.
To assess evidence for genetic linkage from pedigrees, I developed a limited variance-components approach. In this method, variability among trait observations from individuals within pedigrees is expressed in terms of fixed effects from covariates and effects due to an unobservable trait-affecting major locus, random polygenic effects, and residual nongenetic variance. The effect attributable to a locus linked to a marker is a function of the additive and dominance components of variance of the locus, the recombination fraction, and the proportion of genes identical by descent at the marker locus for each pair of sibs. For unlinked loci, the polygenic variance component depends only on the relationship between the relative pair. Parameters can be estimated by either maximum-likelihood methods or quasi-likelihood methods. The forms of quasi-likelihood estimators are provided. Hypothesis tests derived from the maximum-likelihood approach are constructed by appeal to asymptotic theory. A simulation study showed that the size of likelihood-ratio tests was appropriate but that the monogenic component of variance was generally underestimated by the likelihood approach.  相似文献   

17.
An equivalent model for multibreed variance covariance estimation is presented. It considers the additive case including or not the segregation variances. The model is based on splitting the additive genetic values in several independent parts depending on their genetic origin. For each part, it expresses the covariance between relatives as a partial numerator relationship matrix times the corresponding variance component. Estimation of fixed effects, random effects or variance components provided by the model are as simple as any model including several random factors. We present a small example describing the mixed model equations for genetic evaluations and two simulated examples to illustrate the Bayesian variance component estimation.  相似文献   

18.
The distribution of allelic effects under mutation and selection   总被引:2,自引:0,他引:2  
The Price (1970, 1972) equation is applied to the problem of describing the changes in the moments of allelic effects caused by selection, mutation and recombination at loci governing a quantitative genetic character. For comparable assumptions the resulting equations are the same as those obtained by different means by Barton & Turelli (1987; Turelli & Barton, 1989). The Price equation provides a natural framework within which to examine certain kinds of non-additive allelic effects, recombination and assortative mating. The use of the Price equation is illustrated by finding the equilibrium genetic variance under multiplicative dominance and epistasis and under assortative mating at an additive locus. The limitations of the use of recursion equations for the moments of allelic effects are also discussed.  相似文献   

19.
Accurately estimating genetic variance components is important for studying evolution in the wild. Empirical work on domesticated and wild outbred populations suggests that dominance genetic variance represents a substantial part of genetic variance, and theoretical work predicts that ignoring dominance can inflate estimates of additive genetic variance. Whether this issue is pervasive in natural systems is unknown, because we lack estimates of dominance variance in wild populations obtained in situ. Here, we estimate dominance and additive genetic variance, maternal variance, and other sources of nongenetic variance in eight traits measured in over 9000 wild nestlings linked through a genetically resolved pedigree. We find that dominance variance, when estimable, does not statistically differ from zero and represents a modest amount (2-36%) of genetic variance. Simulations show that (1) inferences of all variance components for an average trait are unbiased; (2) the power to detect dominance variance is low; (3) ignoring dominance can mildly inflate additive genetic variance and heritability estimates but such inflation becomes substantial when maternal effects are also ignored. These findings hence suggest that dominance is a small source of phenotypic variance in the wild and highlight the importance of proper model construction for accurately estimating evolutionary potential.  相似文献   

20.
Maternity length of stay (LOS) is an important measure of hospital activity, but its empirical distribution is often positively skewed. A two-component gamma mixture regression model has been proposed to analyze the heterogeneous maternity LOS. The problem is that observations collected from the same hospital are often correlated, which can lead to spurious associations and misleading inferences. To account for the inherent correlation, random effects are incorporated within the linear predictors of the two-component gamma mixture regression model. An EM algorithm is developed for the residual maximum quasi-likelihood estimation of the regression coefficients and variance component parameters. The approach enables the correct identification and assessment of risk factors affecting the short-stay and long-stay patient subgroups. In addition, the predicted random effects can provide information on the inter-hospital variations after adjustment for patient characteristics and health provision factors. A simulation study shows that the estimators obtained via the EM algorithm perform well in all the settings considered. Application to a set of maternity LOS data for women having obstetrical delivery with multiple complicating diagnoses is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号