首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of intercellular spreading of amyloidogenic proteins involved in neurodegenerative diseases have yet to be fully elucidated. While secretion has been implicated in the transfer of many proteins, including prions and α-synuclein, tunneling nanotubes (TNTs) have also been demonstrated for prions and mutant Huntingtin. Here, we provide further evidence that Tau aggregates, which have been demonstrated to predominantly be transferred via secretion, can also be found in TNTs. Additionally, cells that have taken up Tau have increased TNT formation. Coupled with previous evidence that other amyloidogenic aggregates also induce TNT formation we propose that misfolded protein aggregates can, through a common mechanism, promote the formation of TNTs and thereby their own intercellular transfer, contributing to the propagation of pathology.  相似文献   

2.
Diseases associated with the misfolding of endogenous proteins, such as Alzheimer's disease and type II diabetes, are becoming increasingly prevalent. The pathophysiology of these diseases is not totally understood, but mounting evidence suggests that the misfolded protein aggregates themselves may be toxic to cells and serve as key mediators of cell death. As such, an assay that can detect aggregates in a sensitive and selective fashion could provide the basis for early detection of disease, before cellular damage occurs. Here we report the evolution of a reagent that can selectively capture diverse misfolded proteins by interacting with a common supramolecular feature of protein aggregates. By coupling this enrichment tool with protein specific immunoassays, diverse misfolded proteins and sub-femtomole amounts of oligomeric aggregates can be detected in complex biological matrices. We anticipate that this near-universal approach for quantitative misfolded protein detection will become a useful research tool for better understanding amyloidogenic protein pathology as well as serve as the basis for early detection of misfolded protein diseases.  相似文献   

3.
Accumulation of mutant proteins into misfolded species and aggregates is characteristic for diverse neurodegenerative diseases including the polyglutamine diseases. While several studies have suggested that polyglutamine protein aggregates impair the ubiquitin-proteasome system, the molecular mechanisms underlying the interaction between polyglutamine proteins and the proteasome have remained elusive. In this study, we use fluorescence live-cell imaging to demonstrate that the proteasome is sequestered irreversibly within aggregates of overexpressed N-terminal mutant Huntingtin fragment or simple polyglutamine expansion proteins. Moreover, by direct targeting of polyglutamine proteins for proteasomal degradation, we observe incomplete degradation of these substrates both in vitro and in vivo. Thus, our data reveal that intrinsic properties of the polyglutamine proteins prevent their efficient degradation and clearance. Additionally, fluorescence resonance energy transfer is detected between the proteasome and aggregated polyglutamine proteins indicative of a close and stable interaction. We propose that polyglutamine-containing proteins are kinetically trapped within proteasomes, which could explain their deleterious effects on cellular function over time.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS), a fatal adult-onset degenerative neuromuscular disorder with a poorly defined etiology, progresses in an orderly spatiotemporal manner from one or more foci within the nervous system, reminiscent of prion disease pathology. We have previously shown that misfolded mutant Cu/Zn superoxide dismutase (SOD1), mutation of which is associated with a subset of ALS cases, can induce endogenous wild-type SOD1 misfolding in the intracellular environment in a templating fashion similar to that of misfolded prion protein. Our recent observations further extend the prion paradigm of pathological SOD1 to help explain the intercellular transmission of disease along the neuroaxis. It has been shown that both mutant and misfolded wild-type SOD1 can traverse cell-to-cell either as protein aggregates that are released from dying cells and taken up by neighboring cells via macropinocytosis, or released to the extracellular environment on the surface of exosomes secreted from living cells. Furthermore, once propagation of misfolded wild-type SOD1 has been initiated in human cell culture, it continues over multiple passages of transfer and cell growth. Propagation and transmission of misfolded wild-type SOD1 is therefore a potential mechanism in the systematic progression of ALS pathology.  相似文献   

5.
杨立松  陈瑶 《生命科学》2003,15(3):151-154,177
通常,细胞中的错误折叠蛋白质会被蛋白酶体降解。但是在一定的病理和生理条件下,一些错误折叠蛋白质几乎不被降解,反而可以形成蛋白质聚集体。研究表明,许多疾病,如神经退行性疾病的发病机理与错误折叠蛋白质在细胞内的聚集体沉积有关。这些蛋白质聚集体可以通过微管上动力蛋白依赖的逆行性运输形式传送、聚集,最终形成aggresomes。早新的报道还指出,蛋白质聚集体能直接损伤泛素—蛋白酶体系统的功能,从而引起细胞的调控紊乱和细胞死亡。  相似文献   

6.
Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.  相似文献   

7.
A diverse group of neurodegenerative diseases are characterized by progressive, age-dependent intracellular formation of misfolded protein aggregates. These include Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and a number of tau-mediated disorders. There is no effective treatment for any of these disorders; currently approved interventions are designed to treat disease symptoms and generally lead to modest modulation of clinical symptoms. None are known to mitigate underlying neuropathologic mechanisms and, thus, it is not unexpected that existing treatments appear ineffective in modulating disease progression. We note that these neurodegenerative disorders all share a common mechanistic theme in that depositions of misfolded protein in the brain is a key molecular feature underlying disease onset and/or progression. While previous studies have identified a number of drugs and nutraceuticals capable of interfering with the formation and/or stability of misfolded protein aggregates, none have been demonstrated to be effective in vivo for treating any of the neurodegenerative disorders. We hereby review accumulating evidence that a select nutraceutical grape-seed polyphenolic extract (GSPE) is effective in vitro and in vivo in mitigating certain misfolded protein-mediated neuropathologic and clinical phenotypes. We will also review evidence implicating bioavailability of GSPE components in the brain and the tolerability as well as safety of GSPE in animal models and in humans. Collectively, available information supports continued development of the GSPE for treating a variety of neurodegenerative disorders involving misfolded protein-mediated neuropathologic mechanisms.  相似文献   

8.
A wide variety of neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates. More recently, the genetic identification of mutations in familial counterparts to the sporadic disorders, leading to the development of in vitro and in vivo model systems, has provided insights into disease pathogenesis. The effect of many of these mutations is the abnormal processing of misfolded proteins that overwhelms the quality-control systems of the cell, resulting in the deposition of protein aggregates in the nucleus, cytosol and/or extracellular space. Further understanding of mechanisms regulating protein processing and aggregation, as well as of the toxic effects of misfolded neurodegenerative disease proteins, will facilitate development of rationally designed therapies to treat and prevent these disorders.  相似文献   

9.
Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.  相似文献   

10.
Protein folding and diseases   总被引:3,自引:0,他引:3  
For most of proteins to be active, they need well-defined three-dimensional structures alone or in complex. Folding is a process through which newly synthesized proteins get to the native state. Protein folding inside cells is assisted by various chaperones and folding factors, and misfolded proteins are eliminated by the ubiquitin-proteasome degradation system to ensure high fidelity of protein expression. Under certain circumstances, misfolded proteins escape the degradation process, yielding to deposit of protein aggregates such as loop-sheet polymer and amyloid fibril. Diseases characterized by insoluble deposits of proteins have been recognized for long time and are grouped as conformational diseases. Study of protein folding mechanism is required for better understanding of the molecular pathway of such conformational diseases.  相似文献   

11.
Neurodegenerative disease such as Huntington’s, Parkinson’s, and Alzheimer’sdiseases are marked by neuronal accumulation of toxic misfolded protein. Developingtherapies for these misfolding diseases requires finding chemical compounds that caneither clear toxic misfolded protein, or can protect neurons from their impact. Suchcompounds could not only provide the starting points for potential drugs, but could alsoprovide valuable research tools for untangling the complexities of the disease process.Until now, chemical screens for these diseases have focused on finding compoundsthat prevent aggregation of mutant protein. We recently published a compound, B2,which promotes the formation of large inclusions by mutant Huntingtin and α-synuclein,while rescuing some of the toxic effects of these proteins. As inclusions were longbelieved to be toxic to cells, this contradicts previous therapeutic approaches. At thesame time, the results support growing evidence for the protective effects of inclusions.In this review, we discuss these results, and place them in the context of ongoingtherapeutic discovery efforts for HD and other neurodegenerative diseases.  相似文献   

12.
Major neurodegenerative disorders are characterized by the formation of misfolded proteins aggregates inside or outside the neuronal cells. Previous studies suggest that aberrant proteins aggregates play a critical role in protein homeostasis imbalance and failure of protein quality control (PQC) mechanism, leading to disease conditions. However, we still do not understand the precise mechanisms of PQC failure and cellular dysfunctions associated with neurodegenerative diseases caused by the accumulation of protein aggregates. Here, we show that Myricetin, a flavonoid, can eliminate various abnormal proteins from the cellular environment via modulating endogenous levels of Hsp70 chaperone and quality control (QC)-E3 ubiquitin ligase E6-AP. We have observed that Myricetin treatment suppresses the aggregation of different aberrant proteins. Myricetin also enhances the elimination of various toxic neurodegenerative diseases associated proteins from the cells, which could be reversed by the addition of putative proteasome inhibitor (MG132). Remarkably, Myricetin can also stabilize E6-AP and reduce the misfolded proteins inclusions, which further alleviates cytotoxicity. Taken together these findings suggested that new mechanistic and therapeutic insights based on small molecules mediated regulation of disturbed protein quality control mechanism, which may result in the maintenance of the state of proteostasis.  相似文献   

13.
Alzheimer’s, Parkinson’s and Huntington’s disease, and amyotrophic lateral sclerosis are the most relevant neurodegenerative syndromes worldwide. The identification of the etiology and additional factors contributing to the onset and progression of these diseases is of great importance in order to develop both preventive and therapeutic intervention. A common feature of these pathologies is the formation of aggregates, containing mutated and/or misfolded proteins, in specific subsets of neurons, which progressively undergo functional impairment and die. The relationship between protein aggregation and the molecular events leading to neurodegeneration has not yet been clarified. In the last decade, several lines of evidence pointed to a major role for mitochondrial dysfunction in the onset of these pathologies. Here, we review how proteomics has been applied to neurodegenerative diseases in order to characterize the relationship existing between protein aggregation and mitochondrial alterations. Moreover, we highlight recent advances in the use of proteomics to identify protein modifications caused by oxidative stress. Future developments in this field are expected to significantly contribute to the full comprehension of the molecular mechanisms at the heart of neurodegeneration.  相似文献   

14.
The ability of proteins to fold into complex three-dimensional shapes is truly amazing. Given the difficulty of the reaction it is perhaps unsurprising that many proteins in vivo are unable to fold correctly. These misfolded proteins are generally recognized by the cell's quality control machinery and dealt with through degradation. However in an increasing number of diseases, such as Huntington's, Alzheimer's and alpha1-antitrypsin deficiency, misfolded protein accumulates both within and outside the cell. This aggregated protein is able to evade the normal cellular responses and in some cases even disable it. In this review we present an overview of protein misfolding and examine recent data which is beginning to reveal the mechanisms by which protein aggregates are toxic to cells.  相似文献   

15.
The toxic accumulation of misfolded proteins as inclusions, fibrils, or aggregates is a hallmark of many neurodegenerative diseases. However, how molecular chaperones, such as heat shock protein 70 kDa (Hsp70) and heat shock protein 90 kDa (Hsp90), defend cells against the accumulation of misfolded proteins remains unclear. The ATP-dependent foldase function of both Hsp70 and Hsp90 actively transitions misfolded proteins back to their native conformation. By contrast, the ATP-independent holdase function of Hsp70 and Hsp90 prevents the accumulation of misfolded proteins. Foldase and holdase functions can protect against the toxicity associated with protein misfolding, yet we are only beginning to understand the mechanisms through which they modulate neurodegeneration. This review compares recent structural findings regarding the binding of Hsp90 to misfolded and intrinsically disordered proteins, such as tau, α-synuclein, and Tar DNA-binding protein 43. We propose that Hsp90 and Hsp70 interact with these proteins through an extended and dynamic interface that spans the surface of multiple domains of the chaperone proteins. This contrasts with many other Hsp90–client protein interactions for which only a single bound conformation of Hsp90 is proposed. The dynamic nature of these multidomain interactions allows for polymorphic binding of multiple conformations to vast regions of Hsp90. The holdase functions of Hsp70 and Hsp90 may thus allow neuronal cells to modulate misfolded proteins more efficiently by reducing the long-term ATP running costs of the chaperone budget. However, it remains unclear whether holdase functions protect cells by preventing aggregate formation or can increase neurotoxicity by inadvertently stabilizing deleterious oligomers.  相似文献   

16.
The accumulation of intracellular protein deposits as inclusion bodies is the common pathological hallmark of most age-related neurodegenerative disorders including polyglutamine diseases. Appearance of aggregates of the misfolded mutant disease proteins suggest that cells are unable to efficiently degrade them, and failure of clearance leads to the severe disturbances of the cellular quality control system. Recently, the quality control ubiquitin ligase CHIP has been shown to suppress the polyglutamine protein aggregation and toxicity. Here we have identified another ubiquitin ligase, called E6-AP, which is able to promote the proteasomal degradation of misfolded polyglutamine proteins and suppress the polyglutamine protein aggregation and polyglutamine protein-induced cell death. E6-AP interacts with the soluble misfolded polyglutamine protein and associates with their aggregates in both cellular and transgenic mouse models. Partial knockdown of E6-AP enhances the rate of aggregate formation and cell death mediated by the polyglutamine protein. Finally, we have demonstrated the up-regulation of E6-AP in the expanded polyglutamine protein-expressing cells as well as cells exposed to proteasomal stress. These findings suggest that E6-AP is a critical mediator of the neuronal response to misfolded polyglutamine proteins and represents a potential therapeutic target in the polyglutamine diseases.  相似文献   

17.
During the past decade, it has become apparent that a set of ostensibly unrelated neurodegenerative diseases, including Parkinson's disease and Huntington's disease, shares striking molecular and cell biology commonalities. Each of the diseases involves protein misfolding and aggregation, resulting in inclusion bodies and other aggregates within cells. These aggregates often contain ubiquitin, which is the signal for proteolysis by the 26S proteasome, and chaperone proteins that are involved in the refolding of misfolded proteins. The link between the ubiquitin-proteasome system and neurodegeneration has been strengthened by the identification of disease-causing mutations in genes coding for several ubiquitin-proteasome pathway proteins in Parkinson's disease. However, the exact molecular connections between these systems and pathogenesis remain uncertain and controversial. In this article, we summarize the state of current knowledge, focusing on important unresolved questions.  相似文献   

18.
Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α‐synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α‐synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co‐cultured neurons, here we show that α‐synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α‐synuclein fibrils are able to seed soluble α‐synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α‐synuclein aggregates in lysosomes dispose of this material by hijacking TNT‐mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular degenerative disorder with a poorly defined etiology. ALS patients experience motor weakness, which starts focally and spreads throughout the nervous system, culminating in paralysis and death within a few years of diagnosis. While the vast majority of clinical ALS is sporadic with no known cause, mutations in human copper-zinc superoxide dismutase 1 (SOD1) cause about 20 % of inherited cases of ALS. ALS with SOD1 mutations is caused by a toxic gain of function associated with the propensity of mutant SOD1 to misfold, presenting a non-native structure. The mechanisms responsible for the progressive spreading of ALS pathology have been the focus of intense study. We have shown that misfolded SOD1 protein can seed misfolding and aggregation of endogenous wild-type SOD1 similar to amyloid-β and prion protein seeding. Our recent observations demonstrate a transfer of the misfolded SOD1 species from cell to cell, modeling the intercellular transmission of disease through the neuroaxis. We have shown that both mutant and misfolded wild-type SOD1 can traverse cell-to-cell, either as protein aggregates that are released from dying cells and taken up by neighboring cells via macropinocytosis, or in association with vesicles which are released into the extracellular environment. Furthermore, once misfolding of wild-type SOD1 has been initiated in a human cell culture, it can induce misfolding in naïve cell cultures over multiple passages of media transfer long after the initial misfolding template is degraded. Herein we review the data on mechanisms of intercellular transmission of misfolded SOD1.  相似文献   

20.
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration of the structure and function of the central or peripheral nervous systems. One of the major features of NDs, such as Alzheimer''s disease (AD), Parkinson''s disease (PD) and Huntington''s disease (HD), is the aggregation of specific misfolded proteins, which induces cellular dysfunction, neuronal death, loss of synaptic connections and eventually brain damage. By far, a great amount of evidence has suggested that TRIM family proteins play crucial roles in the turnover of normal regulatory and misfolded proteins. To maintain cellular protein quality control, cells rely on two major classes of proteostasis: molecular chaperones and the degradative systems, the latter includes the ubiquitin-proteasome system (UPS) and autophagy; and their dysfunction has been established to result in various physiological disorders including NDs. Emerging evidence has shown that TRIM proteins are key players in facilitating the clearance of misfolded protein aggregates associated with neurodegenerative disorders. Understanding the different pathways these TRIM proteins employ during episodes of neurodegenerative disorder represents a promising therapeutic target. In this review, we elucidated and summarized the diverse roles with underlying mechanisms of members of the TRIM family proteins in NDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号