首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low-angle X-ray diffraction pattern from Lethocerus flight muscle fibres was recorded in rigor or under two conditions that modify crossbridge structure and behaviour, aqueous adenylylimidodiphosphate (AMPPNP) and AMPPNP + calcium in an ethylene glycol-water mixture. The effects on the 38.7 nm layer-line peaks (hk.6) of the diffraction patterns were studied in detail. In aqueous AMPPNP at room temperature, a condition in which rigor tension drops to half without loss of stiffness, the peaks remained nearly as intense as in rigor except for the 10.6, which dropped to half. In 20% (v/v) ethylene glycol-AMPPNP + 100 microM-Ca2+ at 23 degrees C (gly + pnp + Ca), a condition which removed muscle tension but left stiffness close to the rigor value, the 10.6 and 11.6 peaks greatly decreased but the 31.6 remained relatively high. The 14.5 nm meridional peak (00.16) became stronger on addition of AMPPNP and again on adding glycol + calcium. Considered in terms of constructively interfering filaments and crossbridges, the X-ray data indicated a transfer of diffracting crossbridge mass towards the thick filament as relaxation proceeds. We compared the X-ray diffraction patterns and crossbridge structure seen with electron microscopy (EM) under the same chemical conditions. EM and X-ray observations were mutually quite consistent overall. However, X-ray data indicated that more crossbridge mass was stereospecifically related to actin before fixation in the partially relaxed state (gly + pnp + Ca) than was suggested by the disordered crossbridge profiles seen by EM. We conclude that myosin heads at the start of the power stroke may both be closely related to their thick filament origins and form actin-determined attachments to the thin filament.  相似文献   

2.
Subfragment 2 (S2), the segment that links the two myosin heads to the thick filament backbone, may serve as a swing-out adapter allowing crossbridge access to actin, as the elastic component of crossbridges and as part of a phosphorylation-regulated on-off switch for crossbridges in smooth muscle. Low-salt expansion increases interfilament spacing (from 52 nm to 67 nm) of rigor insect flight muscle fibers and exposes a tethering segment of S2 in many crossbridges. Docking an actoS1 atomic model into EM tomograms of swollen rigor fibers identifies in situ for the first time the location, length and angle assignable to a segment of S2. Correspondence analysis of 1831 38.7 nm crossbridge repeats grouped self-similar forms from which class averages could be computed. The full range of the variability in angles and lengths of exposed S2 was displayed by using class averages for atomic fittings of acto-S1, while S2 was modeled by fitting a length of coiled-coil to unaveraged individual repeats. This hybrid modeling shows that the average length of S2 tethers along the thick filament (except near the tapered ends) is approximately 10 nm, or 16% of S2's total length, with an angular range encompassing 90 degrees axially and 120 degrees azimuthally. The large range of S2 angles indicates that some rigor bridges produce positive force that must be balanced by others producing drag force. The short tethering segment clarifies constraints on the function of S2 in accommodating variable myosin head access to actin. We suggest that the short length of S2 may also favor intermolecular head-head interactions in IFM relaxed thick filaments.  相似文献   

3.
Rigor insect flight muscle (IFM) can be relaxed without ATP by increasing ethylene glycol concentration in the presence of adenosine 5′-[β′γ- imido]triphosphate (AMPPNP). Fibers poised at a critical glycol concentration retain rigor stiffness but support no sustained tension (“glycol-stiff state”). This suggests that many crossbridges are weakly attached to actin, possibly at the beginning of the power stroke. Unaveraged three-dimensional tomograms of “glycol-stiff” sarcomeres show crossbridges large enough to contain only a single myosin head, originating from dense collars every 14.5 nm. Crossbridges with an average 90° axial angle contact actin midway between troponin subunits, which identifies the actin azimuth in each 38.7-nm period, in the same region as the actin target zone of the 45° angled rigor lead bridges. These 90° “target zone” bridges originate from the thick filament and approach actin at azimuthal angles similar to rigor lead bridges. Another class of glycol-PNP crossbridge binds outside the rigor actin target zone. These “nontarget zone” bridges display irregular forms and vary widely in axial and azimuthal attachment angles. Fitting the acto-myosin subfragment 1 atomic structure into the tomogram reveals that 90° target zone bridges share with rigor a similar contact interface with actin, while nontarget crossbridges have variable contact interfaces. This suggests that target zone bridges interact specifically with actin, while nontarget zone bridges may not. Target zone bridges constitute only ∼25% of the myosin heads, implying that both specific and nonspecific attachments contribute to the high stiffness. The 90° target zone bridges may represent a preforce attachment that produces force by rotation of the motor domain over actin, possibly independent of the regulatory domain movements. Force production by myosin heads during muscle contraction has long been modeled as a transition of attached crossbridges from a 90° to a 45° axial angle. Efforts to image crossbridge forms and angles intermediate between 90° heads in ATP-relaxed insect flight muscle (IFM)1 and the 45° angled bridges in rigor have used nucleotide analogs such as adenosine 5′-[β′γ-imido] triphosphate (AMPPNP) in stable equilibrium states to drive the crossbridges backwards from the 45° angle in rigor to an attached 90° preforce form, otherwise similar to myosin heads in ATP-relaxed fibers (Reedy et al., 1988; Tregear et al., 1990). However, AMPPNP alone will not fully relax IFM, and crossbridges binding AMPPNP retain many rigor-like features (Schmitz et al., 1996; Winkler et al., 1996). On the other hand, AMPPNP in combination with ethylene glycol will relax IFM. When poised at a critical glycol concentration, muscle stiffness is as high as rigor, suggesting crossbridge attachment, but fibers will not bear sustained tension (Clarke et al., 1984; Tregear et al., 1984). Two-dimensional (2-D) analysis of electron micrographs showed that this stiff glycol-PNP state resembled ATP-relaxed fibers in having dense collars every 14.5 nm along the thick filament and thin crossbridges originating from these collars at various axial angles around 90°. However, unlike relaxed muscle, stiff glycol-PNP fibers showed both 90° angled bridges that were regularly spaced every 38.7 nm and more intensity on the 19.3-nm layer line in optical and x-ray diffraction patterns (Reedy et al., 1988; Tregear et al., 1990). Crossbridges in this partially relaxed, glycol-PNP state are important because they may represent the form of the initial attachment of myosin with bound nucleotide preceding force generation (Marston and Tregear, 1984; Tregear et al., 1984; Reedy et al., 1988). This putative preforce 90° crossbridge could not be characterized in 3-D because its variable form and lattice arrangement precluded imaging by averaging methods of 3-D reconstruction. Recently, nonaveraging tomographic methods have been developed and successfully applied to rigor and aqueous-PNP, facilitating characterization of variable crossbridge forms that occur in situ (Taylor and Winkler, 1995, 1996; Schmitz et al., 1996; Winkler and Taylor, 1996). IFM is superb for structural study because the symmetry and spatial arrangement of filaments results in paired crossbridges on opposite sides of the actin filament. This in turn has given rise to a unique shorthand terminology. The individual crossbridge forms are not unique to IFM, only their symmetrical placement about the thin filament. The filament arrangement also facilitates the microtomy of a type of thin section with coplanar filaments that provide views of the entire crossbridge. The best of these, the myac layer, is a 25-nm-thick longitudinal section containing alternating myosin and actin filaments. In rigor, the maximum number of myosin heads attach to actin, forming doublet pairs every 38.7 nm, the “double chevrons” (Reedy, 1968). “Lead bridges,” which form the pair proximal to the M-band, consist of both heads of a myosin molecule and show an overall axial angle of 45° (Taylor et al., 1984). “Rear bridges,” which form the pair proximal to the Z-disk, consist of a single myosin head angled closer to 90°. Crossbridges originate from the thick filament along helical tracks so the azimuths of their origins follow a regular pattern. Relative to the thin filament in the myac layer, the lead bridges originate from the left-front and back-right of the adjacent thick filaments, while rear bridges originate from the left-back and right-front. At their actin ends, the crossbridge attachments follow the changing rotation of the actin protomers along the actin helix. The combination of the azimuth of the origin and the azimuth of the crossbridge contact to actin define the azimuthal angle of the crossbridge.Target zone is the name given to the region of the thin filament where crossbridges bind (Reedy, 1968); by implication this is the region of the thin filament where actin monomers are most favorably placed for actomyosin interaction. In our previous 3-D reconstructions of rigor and aqueous-PNP (Schmitz et al., 1996; Winkler et al., 1996), it was recognized that troponin maintained a constant position with respect to the most regularly positioned crossbridges, the lead bridges, and could thus be used as a landmark to determine the actin dyad orientation in the lead bridge target zone. The most sterically favorable actin position for crossbridge binding in the IFM lattice is midway between troponin densities, where lead bridges bind. The strained structure of the rigor rear bridges suggests that they bind at the very edge of the target zone (Schmitz et al., 1996; Winkler et al., 1996). The target zone defined by lead bridges alone is narrower than target zones previously considered for rigor muscle (Reedy, 1968) because it does not include rear bridge targets. When aqueous AMPPNP was added to rigor IFM, the tension dropped by two thirds, but the stiffness remained as high as rigor. This initially suggested a reversal of the power stroke, but 3-D reconstructions revealed that the lead bridges remained attached, midway between troponin densities, at axial and azimuthal angles close to rigor. The drop in tension without a large change in axial angle seemed to contradict the lever arm hypothesis for motion producing force. However, a cause for the loss of tension was found in tomograms, which showed that rear bridges detached and were replaced by nonrigor bridges bound to actins outside of the rigor target zone, to sites not selected by crossbridges even under the high-affinity conditions of rigor. These nontarget bridges in aqueous-PNP had variable axial and azimuthal angles and appeared to bind actin with variable contact interfaces. This suggested that they were nonspecifically bound to actin. Moreover, their variable structure did not suggest how a simple axial angle change could convert them to a familiar form, such as an angled rigor bridge. However, an intriguing doublet crossbridge group with a consistent structure was recognized in aqueous-PNP. Immediately M-ward of the “lead” rigor-like bridge was a “nonrigor” bridge bound at a 90° or antirigor angle. In this doublet, called a mask motif, both lead and M-ward nonrigor bridge pairs had similar azimuths and contact interfaces with actin and bound within the lead bridge target zone. A simple angle change could convert the M-ward, nonrigor bridge in a mask motif to a single headed lead bridge. Thus, in the mask motif, the lead bridge could be at the end of the power stroke, with the M-ward, nonrigor bridge near the beginning. The pairing of rigor and antirigor angled crossbridges bound to the same target zone suggests that crossbridges might act as a relay during muscle contraction (Schmitz et al., 1996). The affinity of myosin for actin in aqueous-PNP is high compared with weak binding intermediates thought to represent the beginning of the power stroke (Green and Eisenberg, 1980; Biosca et al., 1990). Therefore, the M-ward crossbridge in the mask motif may not represent the best candidate for a preforce crossbridge. Thus, it is important to characterize crossbridge structure in a state with lower actomyosin affinity, such as the stiff glycol-PNP state, where earlier 2-D analysis indicated that weakly attached 90° bridges are prevalent (Reedy et al., 1988). In this work, we have used two spatially invariant features, troponin position and lead crossbridge origins, to identify distinct classes of crossbridges. The invariant position of troponin recognized in 3-D reconstructions allows us to identify the lead bridge target zone and the actin dyad orientation relative to the bound crossbridges. In addition, the “front-back” rule for the azimuth of the origins of the lead target zone bridges distinguishes crossbridges that bind actin with the correct azimuth for specific binding from those that bind nonspecifically. By fitting the myosin subfragment 1 (S1) atomic structure to the in situ bridges, we can compare the positions of the motor and regulatory domains. Previous results and models have introduced the idea that during a power stroke, the crossbridge rotates over the actin binding site while acting as a long, relatively rigid lever arm (Huxley and Simmons, 1971), while others propose that the motor domain position remains constant and light chain domain movements provide a shorter lever arm (Rayment et al., 1993b ; Whittaker et al., 1995). Our previous results (Reedy et al., 1987, 1988; Schmitz et al., 1996; Winkler et al., 1996) and the present work show (a) that regulatory domain position can vary significantly while motor domain position remains constant and (b) that the motor domain can bind actin with varying orientations. This work supports the possibility that both rotation of the motor domain on actin and movements of the regulatory domain could contribute to the power stroke.  相似文献   

4.
It is commonly believed, for both vertebrate striated and insect flight muscle, that when the ATP analogue adenyl-5'-yl imidodiphosphate (AMPPNP) is added to the muscle fiber in rigor, it causes the fiber to lengthen by 0.15%. This has been interpretated (Marston S.B., C.D. Roger, and R.T. Tregear. 1976. J. Mol. Biol. 104:263-267) as suggesting (a) that in rigor the crossbridge is fixed to, i.e., almost never detaches from the actin filament; (b), that the crossbridge remains fixed to the actin filament after AMPPNP addition; and (c) that the ability of AMPPNP to cause apparent lengthening of a muscle fiber is due to its ability to cause a conformational change in the myosin crossbridge that has an axial component of approximately 1.6 nm/half-sarcomere. The present study, done only on chemically-skinned rabbit psoas fibers, confirms that AMPPNP can cause muscle fibers to lengthen by 0.15% but only for a narrow set of experimental conditions. When experimental conditions are varied over a wider range, it becomes apparent that the extent of lengthening of a rigor muscle fiber upon AMPPNP addition depends almost entirely on the strain present in the rigor fiber before AMPPNP addition. Addition of AMPPNP to an unstrained rigor fiber (one supporting zero tension), induces zero length change while addition of AMPPNP to very highly strained rigor fibers induces length changes greater than 0.15%. The data thus do not support the hypotheses that the crossbridges remain fixed to the actin filament after AMPPNP addition and that the size of the apparent length change induced by AMPPNP is related to the size of the axial component of a conformational change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have investigated the structure of the crossbridges in muscles rapidly frozen while relaxed, in rigor, and at various times after activation from rigor by flash photolysis of caged ATP. We used Fourier analysis of images of cross sections to obtain an average view of the muscle structure, and correspondence analysis to extract information about individual crossbridge shapes. The crossbridge structure changes dramatically between relaxed, rigor, and with time after ATP release. In relaxed muscle, most crossbridges are detached. In rigor, all are attached and have a characteristic asymmetric shape that shows strong left-handed curvature when viewed from the M-line towards the Z-line. Immediately after ATP release, before significant force has developed (20 ms) the homogeneous rigor population is replaced by a much more diverse collection of crossbridge shapes. Over the next few hundred milliseconds, the proportion of attached crossbridges changes little, but the distribution of the crossbridges among different structural classes continues to evolve. Some forms of attached crossbridge (presumably weakly attached) increase at early times when tension is low. The proportion of several other attached non-rigor crossbridge shapes increases in parallel with the development of active tension. The results lend strong support to models of muscle contraction that have attributed force generation to structural changes in attached crossbridges.  相似文献   

6.
The structure of glycerinated Lethocerus insect flight muscle fibers, relaxed by spin-labeled ATP and vanadate (Vi), was examined using X-ray diffraction, electron microscopy and electron paramagnetic resonance (e.p.r.) spectra. We obtained excellent relaxation of MgATP quality as determined by mechanical criteria, using vanadate trapping of 2' spin-labeled 3' deoxyATP at 3 degree C. In rigor fibers, when the diphosphate analog is bound in the absence of Vi, the probes on myosin heads are well-ordered, in agreement with electron microscopic and X-ray patterns showing that myosin heads are ordered when attached strongly to actin. In relaxed muscle, however, e.p.r. spectra report orientational disorder of bound (Vi-trapped) spin-labeled nucleotide, while electron microscopic and X-ray patterns both show well-ordered bridges at a uniform 90 degrees angle to the filament axis. The spin-labeled nucleotide orientation is highly disordered, but not completely isotropic; the slight anisotropy observed in probe spectra is consistent with a shift of approximately 10% of probes from angles close to 0 degrees to angles close to 90 degrees. Measurements of probe mobility suggest that the interaction between probe and protein remains as tight in relaxed fibers as in rigor, and thus that the disorder in relaxed fibers arises from disorders of (or within) the protein and not from disorder of the probe relative to the protein. Fixation of the relaxed fibers with glutaraldehyde did not alter any aspect of the spectrum of the Vi-trapped analog, including the slight order observed, showing that the extensive inter- and intra-molecular cross-linking of the first step of sample preparation for electron microscopy had not altered relaxed crossbridge orientations. Two models that may reconcile the apparently disparate results obtained on relaxed fibers are presented: (1) a rigid myosin head could possess considerable disorder in the regular array about the thick filament; or (2) the nucleotide site could be on a disordered, probably distal, domain of myosin, while a more proximal region is well ordered on the thick filament backbone. Our findings suggest that when e.p.r. probes signal disorder of a local site or domain, this is complementary, not contradictory, to signals of general order. The e.p.r. spectra show that a portion of the myosin molecule can be disordered at the same time as the X-ray diffraction and electron microscopy show the bulk of myosin head mass to be uniformly oriented and regularly arrayed.  相似文献   

7.
Chaen et al. (1986. J. Biol. Chem. 261:13632-13636) showed that treatment of relaxed single muscle fibers with para-phenylenedimaleimide (pPDM) results in inhibition of a fiber's ability to generate active force and a diminished ATPase activity. They postulated that the inhibition of force production was due to pPDM's ability to prevent crossbridges from participating in the normal ATP hydrolysis cycle. We find that the crossbridges produced by pPDM treatment of relaxed muscle cannot bind strongly to the actin filaments in rigor, but do bind weakly to the actin filaments in the presence and also absence of ATP. After pPDM treatment, fiber stiffness, as measured using ramp stretches of varying duration, is ATP-insensitive and identical to that of untreated relaxed fibers (both at high [165 mM] and low [40 mM] ionic strength). These results suggest that the pPDM-treated crossbridges, in both the presence and absence of ATP, are locked in a state that resembles the weakly-binding myosin ATP state of normal crossbridges. Their resemblance to the ATP-crossbridges of relaxed untreated fibers is quite strong; both bind to actin about equally tightly and have similar attachment and detachment rate constants. We also found that crossbridges are locked in a weakly-binding state after treatment with N-phenylmaleimide (NPM). In muscle fibers, this method of producing weakly-binding crossbridges appears preferable to pPDM treatment because, unlike treatment with pPDM, it does not increase the fiber's resting tension and stiffness and it does not disrupt the titin band seen on SDS-PAGE.  相似文献   

8.
Rigor crossbridges are double-headed in fast muscle from crayfish   总被引:2,自引:0,他引:2       下载免费PDF全文
The structure of rigor crossbridges was examined by comparing rigor crossbridges in fast muscle fibers from glycerol-extracted abdominal flexor muscle of crayfish with those in "natively decorated" thin filaments from the same muscle. Natively decorated thin filaments were obtained by dissociating the backbone of the myosin filaments of rigor myofibrils in 0.6 M KCl. Intact fibers were freeze-fractured, deep-etched, and rotary shadowed; isolated filaments were either negatively stained or freeze dried and rotary shadowed. The crossbridges on the natively decorated actin maintain the original spacing and the disposition in chevrons and double chevrons for several hours, indicating that no rearrangement of the actomyosin interactions occurs. Thus the crossbridges of the natively decorated filaments were formed within the geometrical constraints of the intact myofibril. The majority of crossbridges in the intact muscle have a triangular shape indicative of double-headed crossbridge. The triangular shape is maintained in the isolated filaments and negative staining resolves two heads in a single crossbridge. In the isolated filaments, crossbridges are attached at uniform acute angles. Unlike those in insect flight muscle (Taylor et al., 1984), lead and rear elements of the double chevron may be both double-headed. Deep-etched images reveal a twisted arrangement of subfilaments in the backbone of the thick filament.  相似文献   

9.
As a first step toward freeze-trapping and 3-D modeling of the very rapid load-induced structural responses of active myosin heads, we explored the conformational range of longer lasting force-dependent changes in rigor crossbridges of insect flight muscle (IFM). Rigor IFM fibers were slam-frozen after ramp stretch (1000 ms) of 1-2% and freeze-substituted. Tomograms were calculated from tilt series of 30 nm longitudinal sections of Araldite-embedded fibers. Modified procedures of alignment and correspondence analysis grouped self-similar crossbridge forms into 16 class averages with 4.5 nm resolution, revealing actin protomers and myosin S2 segments of some crossbridges for the first time in muscle thin sections. Acto-S1 atomic models manually fitted to crossbridge density required a range of lever arm adjustments to match variably distorted rigor crossbridges. Some lever arms were unchanged compared with low tension rigor, while others were bent and displaced M-ward by up to 4.5 nm. The average displacement was 1.6 +/- 1.0 nm. "Map back" images that replaced each unaveraged 39 nm crossbridge motif by its class average showed an ordered mix of distorted and unaltered crossbridges distributed along the 116 nm repeat that reflects differences in rigor myosin head loading even before stretch.  相似文献   

10.
It was shown previously that a significant fraction of the myosin crossbridges is attached to actin in the skinned rabbit psoas fibers under relaxed conditions at low ionic strength and low temperature (Brenner, B., M. Schoenberg, J. M. Chalovich, L. E. Greene, and E. Eisenberg. 1982. Proc. Natl. Acad. Sci. USA. 79:7288-7291; Brenner, B., L. C. Lu, and R. J. Podolsky. 1984. Biophys. J. 46:299-306). In the present work, the structure of the attached crossbridges in the relaxed state between ionic strengths of 20 and 100 mM, as compared with that in the rigor state, is further examined by equatorial x-ray diffraction. Mass distributions projected along the fiber axis are reconstructed based on the first five equatorial reflections such that the spatial resolution is 128 A. The fraction of crossbridges attached under relaxed conditions are estimated to be in the range of 30% (at 100 mM ionic strength) and 60% (at 20 mM). The reconstructed density maps suggest that in the relaxed state, upon attachment the part of the crossbridge that centers around the thin filament is small, and the attachment does not significantly alter the center of mass of the myosin head distribution around the thick filament backbone. In contrast, accretion of mass in the rigor state occurs in a wider region surrounding the thin filament. In this case, mass in the surface region of the thick filament backbone is shifted slightly outward, probably by approximately 10 A. A schematic model for interpreting the present data is presented.  相似文献   

11.
Muscle contraction is generally thought to involve changes in the orientation of myosin crossbridges during their ATP-driven cyclical interaction with actin. We have investigated crossbridge orientation in equilibrium states of the crossbridge cycle in demembranated fibres of frog and rabbit muscle, using a novel combination of techniques: birefringence and X-ray diffraction. Muscle birefringence is sensitive to both crossbridge orientation and the transverse spacing of the contractile filament lattice. The latter was determined from the equatorial X-ray diffraction pattern, allowing accurate characterization of the orientation component of birefringence changes. We found that this component decreased when relaxed muscle fibres were put into rigor at rest length, and when either the ionic strength or temperature of relaxed fibres was lowered. In each case the birefringence decrease was accompanied by an increase in the intensity of the (1,1) equatorial X-ray reflection relative to that of the (1,0) reflection. When fibres that had been stretched largely to eliminate overlap between actin- and myosin-containing filaments were put into rigor, there was no change in the orientation component of the birefringence. When isolated myosin subfragment-1 was bound to these rigor fibres, the orientation component of the birefringence increased. The birefringence changes at rest length are likely to be due to changes in the orientation of myosin crossbridges, and in particular of the globular head region of the myosin molecules. In relaxed fibres from rabbit muscle, at 100 mM ionic strength, 15 degrees C, the long axis of the heads appears to be relatively well aligned with the filament axis. When fibres are put into rigor, or the temperature or ionic strength is lowered, the degree of alignment decreases and there is a transfer of crossbridge mass towards the actin-containing filaments.  相似文献   

12.
Rapid freezing followed by freeze-substitution has been used to study the ultrastructure of the myosin filaments of live and demembranated frog sartorius muscle in the states of relaxation and rigor. Electron microscopy of longitudinal sections of relaxed specimens showed greatly improved preservation of thick filament ultrastructure compared with conventional fixation. This was revealed by the appearance of a clear helical arrangement of myosin crossbridges along the filament surface and by a series of layer line reflections in computed Fourier transforms of sections, corresponding to the layer lines indexing on a 43 nm repeat in X-ray diffraction patterns of whole, living muscles. Filtered images of single myosin filaments were similar to those of negatively stained, isolated vertebrate filaments and consistent with a three-start helix. M-line and other non-myosin proteins were also very well preserved. Rigor specimens showed, in the region of overlapping myosin and actin filaments, periodicities corresponding to the 36, 24, 14.4 and 5.9 nm repeats detected in X-ray patterns of whole muscle in rigor; in the H-zone they showed a disordered array of crossbridges. Transverse sections, whose Fourier transforms extend to the (3, 0) reflection, supported the view, based on X-ray diffraction and conventional electron microscopy, that in the overlap zone of relaxed muscle most of the crossbridges are detached from the thin filaments while in rigor they are attached. We conclude that the rapid freezing technique preserves the molecular structure of the myofilaments closer to the in vivo state (as monitored by X-ray diffraction) than does normal fixation.  相似文献   

13.
The molecular basis of muscle contraction is thought to consist of cyclic movements of parts of the myosin molecules (crossbridges). Unitl now different states of the proposed crossbridge cycle could be stablilized and demonstrated by electron microscopy only in the case of highly specialized insect flight muscles. In this paper evidence is presented that it is also possible to induce crossbridge positions corresponding to the rigor [16] and the pseudorelaxed state [3] in non-insect muscles. Homogenization of myofibrils of the abdominal flexors of the crayfish Orconectes limosus in rigor or AMP.PNP-containing solutions brings about two different crossbridge patterns: The formation of crossbridges attached to the actin filaments in a mainly acute (rigor) or in a mainly perpendicular angle (pseudo-relaxed). Optical diffraction patterns taken from electron micrographs of sarcomere fragments are likewise compatible with those taken from sarcomeres of insect flight muscles fixed in comparable conditions [2,3].  相似文献   

14.
In the presence of ATP and absence of Ca2+, muscle crossbridges have either MgATP or MgADP.Pi bound at the active site (S. B. Marston and R. T. Tregear, Nature [Lond.], 235:22:1972). The behavior of these myosin adenosine triphosphate (M.ATP) crossbridges, both in relaxed skinned rabbit psoas and frog semitendinosus fibers, was analyzed. At very low ionic strength, T = 5 degrees C, mu = 20 mM, these crossbridges spend a large fraction of the time attached to actin. In rabbit, the attachment rate constants at low salt are 10(4) - 10(5) s-1, and the detachment rate constants are approximately 10(4) s-1. When ionic strength is increased up to physiological values by addition of 140 mM potassium propionate, the major effect is a weakening of the crossbridge binding constant approximately 30-40-fold. This effect occurs because of a large decrease, approximately 100-fold, in the crossbridge attachment rate constants. The detachment rate constants decrease only 2-3-fold. The effect of ionic strength on crossbridge binding in the fiber is very similar to the effect of ionic strength on the binding of myosin subfragment-1 to unregulated actin in solution. Thus, the effect of increasing ionic strength in fibers appears to be a direct effect on crossbridge binding rather than an effect on troponin-tropomyosin. The finding that crossbridges with ATP bound at the active site can and do attach to actin over a wide range of ionic strengths strongly suggests that troponin-tropomyosin keeps a muscle relaxed by blocking a step subsequent to crossbridge attachment. Thus, rather than troponin-tropomyosin serving to keep a muscle relaxed by inhibiting attachment, it seems quite possible that the main way in which troponin-tropomyosin regulates muscle activity is by preventing the weakly-binding relaxed crossbridges from going on through the crossbridge cycle into more strongly-binding states.  相似文献   

15.
Whereas the mechanical behavior of fully activated fibers can be explained by assuming that attached force-producing crossbridges exist in at least two configurations, one exerting more force than the other (Huxley A. F., and R. M. Simmons. 1971. Nature [Lond.]. 233:533-538), and the behavior of relaxed fibers can be explained by assuming a single population of weakly binding rapid-equilibrium crossbridges (Schoenberg, M. 1988. Biophys. J. 54:135-148), it has not been possible to explain the transition between rest and activation in these terms. The difficulty in explaining why, after electrical stimulation of resting intact frog skeletal muscle fibers at 1-5 degrees C, force development lags stiffness development by more than 15 ms has led a number of investigators to postulate additional crossbridge states. However, postulation of an additional crossbridge state will not explain the following three observations: (a) Although the lag between force and stiffness is very different after stimulation, during the redevelopment of force after an extended period of high velocity shortening, and during relaxation of a tetanus, nonetheless, the plots of force versus stiffness in each of these cases are approximately the same. (b) When the lag between stiffness and force during the rising phase of a twitch is changed nearly fourfold by changing temperature, again the plot of force versus stiffness remains essentially unchanged. (c) When a muscle fiber is subjected to a small quick length change, the rate constant for the isometric force recovery is faster when the length change is applied during the rising phase of a tenanus than when it is applied on the plateau. We have been able to explain all the above findings using a model for force production that is similar to the 1971 model of Huxley and Simmons, but which makes the additional assumption that the force-producing transition envisioned by them is a cooperative one, with the back rate constant of the force-producing transition decreasing as more crossbridges attach.  相似文献   

16.
Smooth muscle's slow, economical contractions may relate to the kinetics of the crossbridge cycle. We characterized the crossbridge cycle in smooth muscle by studying tension recovery in response to a small, rapid length change (i.e., tension transients) in single smooth muscle cells from the toad stomach (Bufo marinus). To confirm that these tension transients reflect crossbridge kinetics, we examined the effect of lowering cell temperature on the tension transient time course. Once this was confirmed, cells were exposed to low extracellular calcium [( Ca2+]o) to determine whether modulation of the cell's shortening velocity by changes in [Ca2+]o reflected the calcium sensitivity of one or more steps in the crossbridge cycle. Single smooth muscle cells were tied between an ultrasensitive force transducer and length displacement device after equilibration in temperature-controlled physiological saline having either a low (0.18 mM) or normal (1.8 mM) calcium concentration. At the peak of isometric force, after electrical stimulation, small, rapid (less than or equal to 1.8% cell length in 3.6 ms) step stretches and releases were imposed. At room temperature (20 degrees C) in normal [Ca2+]o, tension recovery after the length step was described by the sum of two exponentials with rates of 40-90 s-1 for the fast phase and 2-4 s-1 for the slow phase. In normal [Ca2+]o but at low temperature (10 degrees C), the fast tension recovery phase slowed (apparent Q10 = 1.9) for both stretches and releases whereas the slow tension recovery phase for a release was only moderately affected (apparent Q10 = 1.4) while unaffected for a stretch. Dynamic stiffness was determined throughout the time course of the tension transient to help correlate the tension transient phases with specific step(s) in the crossbridge cycle. The dissociation of tension and stiffness, during the fast tension recovery phase after a release, was interpreted as evidence that this recovery phase resulted from both the transition of crossbridges from a low- to high-force producing state as well as a transient detachment of crossbridges. From the temperature studies and dynamic stiffness measurements, the slow tension recovery phase most likely reflects the overall rate of crossbridge cycling. From the tension transient studies, it appears that crossbridges cycle slower and have a longer duty cycle in smooth muscle. In low [Ca2+]o at 20 degrees C, little effect was observed on the form or time course of the tension transients.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We have used electron paramagnetic resonance (EPR) to investigate the orientation, rotational motion, and actin-binding properties of rabbit psoas muscle cross-bridges in the presence of the nonhydrolyzable nucleotide analogue, 5'-adenylylimido-diphosphate (AMPPNP). This analogue is known to decrease muscle tension without affecting its stiffness, suggesting an attached cross-bridge state different from rigor. We spin-labeled the SH1 groups on myosin heads and performed conventional EPR to obtain high-resolution information about the orientational distribution, and saturation transfer EPR to measure microsecond rotational motion. At 4 degrees C and 100 mM ionic strength, we find that AMPPNP increases both the orientational disorder and the microsecond rotational motion of myosin heads. However, computer analysis of digitized spectra shows that no new population of probes is observed that does not match either rigor or relaxation in both orientation and motion. At 4 degrees C, under nearly saturating conditions of 16 mM AMPPNP (Kd = 3.0 mM, determined from competition between AMPPNP and an ADP spin label), 47.5 +/- 2.5% of myosin heads are dynamically disoriented (as in relaxation) without a significant decrease in rigor stiffness, whereas the remainder are rigidly oriented as in rigor. The oriented heads correspond to actin-attached heads in a ternary complex, and the disoriented heads correspond to detached heads, as indicated by EPR experiments with spin-labeled subfragment 1 (S1) that provide independent measurements of orientation and binding. We take these findings as evidence for a single-headed cross-bridge that is as stiff as the double-headed rigor cross-bridge. The data are consistent with a model in which, in the presence of saturating AMPPNP, one head of each cross-bridge binds actin about 10 times more weakly, whereas the remaining head binds at least 10 times more strongly, than extrinsic S1. Thus, although there is no evidence for heads being attached at nonrigor angles, the attached cross-bridge differs from that of rigor. The heterogeneous behavior of heads is probably due to steric effects of the filament lattice.  相似文献   

18.
The intensity of light scattered by chemically skinned rabbit psoas fibers in relaxed, rigor, and activated states was monitored at 90 degrees to the incident beam. In the relaxed state, scattering varied in proportion to the volume of muscle in the beam. Scattering increased to 2.3 times the resting value when rigor was induced by withdrawal of MgATP or when the myofibrils were activated by the caffeine-induced release of Ca from the sarcoplasmic reticulum. The rigor-induced increase in scattering decreased monotonically when MgATP was reintroduced stepwise (0-100 microM). This decrease in scattering was accompanied by an increase in tension up to an optimum MgATP level of approximately 10 microM, and then tension decreased at higher concentrations (10-100 microM). The increase in scattering during both rigor and activation was dependent upon fiber length. At lengths when thick-thin filament overlap was near zero, the light signal due to rigor and activation fell to within 10% of the signal for the relaxed fiber at that length. The signal during rigor increased only minimally (approximately 10%) when stretch (approximately 1%) was applied. This increase in signal was small despite a measured 5- to 10-fold increase in tension and an estimated twofold increase in stiffness. Thus, the increased light scattering caused by rigor and activation depends on filament overlap and not tension, stiffness, or substrate binding.  相似文献   

19.
Glycerol-extracted rabbit psoas muscle fibers were impaled with KCl-filled glass microelectrodes. For fibers at rest-length, the potentials were significantly more negative in solutions producing relaxation than in solutions producing either rigor or contraction; further the potentials in the latter two cases were not significantly different. For stretched fibers, with no overlap between thick and thin filaments, the potentials did not differ in the rigor, the relaxation, or the contraction solutions. The potentials measured from fibers in rigor did not vary significantly with the sarcomere length. For relaxed fibers, however, the potential magnitude decreased with increasing sarcomere length. The difference between the potentials measured for rigor and relaxed fibers exhibited a nonlinear relationship with sarcomere length. The potentials from calcium-insensitive fibers were less negative in both the rigor and the relaxation solutions than those from normal fibers. When calcium-insensitive fibers had been incubated in Hasselbach and Schneider's solution plus MgCl2 or Guba-Straub's solution plus MgATP the potentials recorded upon impalement were similar in the rigor and the relaxation solution to those obtained from normal fibers in the relaxed state. It is concluded that the increase in the negative potential as the glycerinated fiber goes from rigor to relaxation may be due to an alteration in the conformation of the contractile proteins in the relaxed state.  相似文献   

20.
The orientation of the backbone structure of myosin filaments of relaxed and rigor fibers of the flight muscles of the housefly, Musca domestica, relative to the actin filaments has been investigated. In relaxed muscles 23% of the myosin filaments have gaps in the wall of their shaft located opposite the surrounding actin filaments, while in 77% the subfilament pairs of the wall are thus located. These are the expected values if the backbone orientation is random. In rigor muscles 40% of the thick filaments have their gaps opposite the actins and 60%, the subfilament pairs are opposite the actins. This increase in the percentage of filaments with gaps opposite the actins therefore results from binding of the crossbridges in rigor with change in rotational orientation of the backbone. The findings are related to a model of Beinbrech et al. (1988) in which two populations of crossbridges have been postulated: one originating at the surface of the thick filaments, the other coming from within the gap between the subfilament pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号