首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Candida albicans starved cells were incubated in minimal synthetic liquid media containing different concentrations of ammonium sulphate (0.00, 0.02, 0.05, 0.10, 0.03, 0.50 g/L). Culture growth was monitored by measuring daily the optical density and by evaluating RNA and protein cellular content after 48 and 96 hours from the inoculum. The environmental availability of ammonium ion influenced the biomass production, that was maximum when its concentration was 0.10 and 0.30 g/L. In addition, an effect on cell duplication time was observed, this was particularly evident when the (NH4)2SO4 concentration was 0.10 g/L. The protein content increased in relation to the increase of ammonium ion availability, with a peak in correspondence to 0.30 g/L and a drop when the greatest concentrations were employed. RNA production was inversely proportional in respect to protein production. The optimal range of ammonium sulphate concentration forC. albicans growth was 0.10–0.30 g/L; over these concentrations there was an inhibitory effect. The rate of the protein and RNA syntheses seems to indicate the growth phase and the nitrogen nutritional conditions of the cultures, respectively.  相似文献   

2.
The growth characteristics and influence of glucose and glutamine on the growth and maintenance of channel catfish ovary (CCO) cells were investigated. Besides glutamine, amino acids threonine, arginine, methionine and serine were found to be essential for CCO cell growth. In the glucose-free medium, glutamine is utilized as energy source and no cell growth limitation was observed. However, the lack of glutamine in culture medium did not stimulate CCO cells to efficient glucose consumption. When both glucose and glutamine were deficient, cell growth was also observed suggesting no rigorous nutritional requirements. Obtained results are useful for further understanding of culture processes using CCO cells.  相似文献   

3.
不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响   总被引:11,自引:0,他引:11  
对一株从野外分离得到的铜绿微囊藻产毒株进行分批培养,在不同的氮磷条件下研究其生长、光合荧光及毒素含量的变化。结果表明:正磷酸盐浓度不变时,铵氮浓度的改变对铜绿微囊藻的生长有明显影响。叶绿素a(Chl.a)含量在铵氮浓度为1.83-18.3mg/L时明显较大;微囊藻毒素(包括MC-LR和MC-RR)的含量在铵氮浓度为1.83mg/L时达到最大;当铵氮浓度为0-1.83mg/L时,随着铵氮浓度升高,可变荧光FV和MC的产量均增大,同时MC异构体的种类增多;铵氮浓度过大对M.aeruginosa的生长、生理和产毒均有抑制作用。在另一组实验中,即铵氮浓度不变而正磷酸盐浓度增大时,Chl.a含量呈总体下降的趋势,并且与FV/Fm呈显著正相关关系(P<0.01,r=0.97),MC(MC-LR和MC-RR)的含量在正磷酸盐浓度小于0.56mg/L时明显升高,MC-LR与FV/Fm呈显著正相关关系(P<0.01,r=0.967)。    相似文献   

4.
S. Schmidt  H. Mohr 《Planta》1989,177(4):526-534
During transformation of mustard seedlings cotyledons from storage organs to photosynthetically competent leaves, a process which occurs during the first 4 d after sowing, total glutamine-synthetase (GS, EC 6.3.1.2) activity increases from zero to the high level usually observed in green leaves. In the present study we have used ion-exchange chromatography to separate possible isoforms of GS during the development of the cotyledons. The approach failed since we could only detect a single form of GS, presumably plastidic GS, under all circumstances tested. The technique of selective photooxidative destruction of plastids in situ was applied to solve the problem of GS localization. It was inferred from the data that the GS as detected by ion-exchange chromatography is plastidic GS.The regulatory role, if any, of light, nitrate and ammonium in the process of the appearance of GS in the developing cotyledons was investigated. The results show that nitrate and ammonium play only minor roles. Light, operating via phytochrome, is the major regulatory factor.Abbreviations c continuous - D darkness - FPLC fast protein liquid chromatography - GS glutamine synthetase (L-glutamate:ammonia ligase, ADP forming, EC 6.3.1.2) - FR far-red light (3.5 W·m-2) - NF Norflurazon - R red light (6.8 W·m-2, R=0.8)) - RG9-light long-wavelength FR (10 W·m-2, RG9<0.01) - () Pfr/Ptot=wavelength-dependent photoequilibrium of the phytochrome system  相似文献   

5.
The relationship between ammonium assimilation and ammonium export has been studied in free-living, N2-fixing Rhizobium sp. 32H1. After 55 to 67 h of microaerobic growth under a gas phase of 0.2% O2 – 1.0% CO2 – 98.8% Ar high levels of nitrogenase were observed concomitant with a slightly adenylylated glutamine synthetase (GSI) and some glutamine synthetase (GSII) activity. However, after growth of 89 h, or longer, GSI became adenylylated and the level of GSII had decreased. When the gas phase was shifted to 0.2% O2 – 1.0% CO2 – 98.8% N2, a lag was observed before ammonium export could be detected in the 55 to 67 h cultures. No lag in ammonium export was observed in the cultures previously grown for 89 h. The onset of ammonium export in the 55 to 67 h cultures was found to correlate with the adenylylation state of GSI. There appeared to be no correlation between the level of GSII and the export of ammonium. Neither an increase in the adenylylation level of GSI nor ammonium export was observed when the 55 to 67 h cultures were maintained under the Ar gas mixture.Abbreviations GOGAT Glutamate synthase - GS glutamine synthetase - BES [N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid] - CTAB cetyltrimethylammonium bromide - MES [2-(N-morpholino)-ethane sulfonic acid]  相似文献   

6.
The aim of this study was to determine if severe exercise-induced muscle damage alters the plasma concentrations of glutamine and zinc. Changes in plasma concentrations of glutamine, zinc and polymorphonuclear elastase (an index of phagocytic cell activation) were examined for up to 10 days following eccentric exercise of the knee extensors of one leg in eight untrained subjects. The exercise bout consisted of 20 repetitions of electrically stimulated eccentric muscle actions on an isokinetic dynamometer. Subjects experienced severe muscle soreness and large increases in plasma creatine kinase activity indicative of muscle fibre damage. Peak soreness occurred at 2 days post-exercise and peak creatine kinase activity [21714 (6416) U · l−1, mean (SEM)] occurred at 3 days post-exercise (P < 0.01 compared with pre-exercise). Plasma elastase concentration was increased at 3 days post-exercise compared with pre-exercise (P < 0.05), and is presumably indicative of ongoing phagocytic leucocyte infiltration and activation in the damaged muscles. There were no significant changes in plasma zinc and glutamine concentrations in the days following eccentric exercise. We conclude that exercise-induced muscle damage does not produce changes in plasma glutamine or zinc concentrations despite evidence of phagocytic neutrophil activation. Accepted: 3 November 1997  相似文献   

7.
When a transfected CHO cell, that produces tissue-type Plasminogen Activator, t-PA, was transferred from a medium based on 5% Fetal Calf Serum, FCS, to a medium based on 0.8% casein peptone with variable glutamine and asparagine content, it was observed, that the growth of the cells changed from anchorage dependant to suspension culture giving more reproducible cultivations. In the FCS culture t-PA was unstable, observed as a decline in t-PA concentration after 250 h. This decline in t-PA concentration was not observed in the serum free culture, although there was a decline in productivity after 200 h. This change in production profile may be attributed to either no proteolytic attack from serum or by scavenging of proteolytic activities produced by the cells from the peptone peptides. Increasing amounts of glutamine/asparagine gave higher production of t-PA in synchrony with an increasing production of ammonia/ammonium ions. Ammonia inhibition does not seem to be a key factor for this cell line as seen with many others.  相似文献   

8.
9.
Ammonium ion accumulation and the decrease in glutamine synthetase (GS)activity induced by CdCl2 were investigated in relation to lipidperoxidation in detached rice leaves. CdCl2 was effective inincreasing ammonium ion content, decreasing GS activity and increasing lipidperoxidation. Free radical scavengers (glutathione, thiourea, sodium benzoate)and an iron chelator (2,2-bipyridine) were able to inhibit the decreasein GS activity and ammonium ion accumulation caused by CdCl2 and atthe same time inhibit CdCl2-induced lipid peroxidation. Paraquat,which is known to produce oxygen radicals, decreased GS activity, increasedammonium ion content, and increased lipid peroxidation. GS1 appears to be thepredominant isoform present. Excess Cd caused a decrease in GS1 but not in GS2in detached rice leaves. An increase in lipid peroxidation preceded ammoniumionaccumulation and the decrease in GS1 activity. These results suggest that thedecrease in GS activity and the accumulation of ammonium ions in detached riceleaves are a consequence of oxidative damage caused by excess Cd.  相似文献   

10.
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions.  相似文献   

11.
12.
A model for transport of ammonia and ammonium ions across cell membranes is presented. The model suggests that ammonium ions compete with potassium ions for inward transport, over the cytoplasmic membrane, via potassium transport proteins like the Na+/K+-ATPase and the Na+K+2Cl-cotransporter. It also explains the difference between the ammonia/ammonium that is added to the cells and which is formed by the cells during metabolism of amino acids, especially glutamine and glutamate. The ammonium transport and subsequent events lead to predictable intracellular and extracellular pH (pHe) changes. Experiments which verified the model and the predicted consequences were performed by measurements of the pHe in concentrated cell suspensions. Addition of ammonium ions caused a time-dependent pHe increase which was inhibited by potassium ions. The test system is not per se specific for transport measurements but the effect of potassium ions on the pHe strongly favors our suggested model. Simple diffusion of ammonium ions would not be counteracted by potassium ions. The results show that ammonium ion transport in the murine myeloma cell line (Sp2/0-Ag14) used is inhibited by an excess of potassium ions. Results from experiments with specific inhibitors of suggested transport proteins were not conclusive. It is postulated that one important toxic effect of ammonia/ammonium is an increased demand for maintenance energy, caused by the need to maintain ion gradients over the cytoplasmic membrane. The results also suggest that potassium ions can be used to detoxify ammonia/ammonium in animal cell cultivations.  相似文献   

13.
Root glutamine synthetase (GS; EC 6.3.1.2) activity was measured daily (0 to 4 days) for eelgrass (Zostera marina L.) plants held under continuous darkness rooted in sediments, continuous darkness without sediments, continuous light without sediments, and control light/dark cycle (Control L/D). Roots experiencing prolonged aerobiosis exhibited lower activity in vitro than controls, whereas roots experiencing prolonged anoxia exhibited increased activity. Plants held in darkness without sediments had activity intermediate between controls and anoxic roots. One-hour pretreatment of root extracts with ATP slightly reduced in vitro glutamine synthetase activity, whereas pretreatment with ADP and AMP increased activity ≈50%. While glutamine synthetase activity increased with higher adenylate energy charge (AEC) in the reaction mixture, pretreatment of enzyme extracts at high adenylate energy charges decreased subsequent activity relative to pretreatment at lower energy charges. One-hour pretreatment with l-alanine (Ala) had little effect on enzyme activity. Pretreatment with l-glutamine (Gln), l-glutamate (Glu), and γ-amino butyric acid (GABA) increased activity ≈75%. Incubation of excised roots under anoxic conditions for 24 h nearly doubled enzyme activity. However, addition of cycloheximide to anoxic root incubations lessened or prevented the increase in activity. It appears that enhanced glutamine synthetase activity following periods of root anoxia results from interactions with metabolites that fluctuate between aerobic and anoxic conditions, particularly adenylates, and from de novo synthesis of glutamine synthetase or some other protein synthesis-dependent process.  相似文献   

14.
15.
Summary The transformation of urea and ammonium sulphate in Ladwa sandy loam and Balsamand sand was studied in laboratory. Urea took at least one week in sandy loam and 2 weeks in sandy soils to hydrolyse completely. The process of hydrolysis was faster in finer soil with high organic matter than in coarse soil having low organic matter. There was no nitrification upto 3 days in sandy loam and upto 7 days in sandy soils, respectively, but there was immobilization of NO3-N during these initial periods. The NO3-N content at the end of incubation period (35 days) was more in case of urea than in case of ammonium sulphate treated samples in sandy loam soil and reverse was true in sandy soil. The hydrolysis of urea did not follow zero or first order kinetics as proposed in previous studies.  相似文献   

16.
Glutamine is an essential substrate for the proper functioning of cells of the immune system. Falls in plasma glutamine concentration after exercise may have deleterious consequences for immune cell function and render the individual more susceptible to infection. The purpose of the present study was to examine changes in plasma glutamine concentration (measured using a validated enzymatic spectrophotometric method) following an acute bout of intermittent high-intensity exercise. Eight well-trained male games players took part in the study. Subjects reported to the laboratory following an overnight fast and performed a 1-h cycle exercise task consisting of 20 1-min periods at 100% maximal O2 consumption (O2max) each separated by 2 min of recovery at 30% O2max. Venous blood samples were taken before exercise and at 5 min, 1 h, 2.5 h, 5 h and 24 h post-exercise. Glutamine was measured by enzymatic spectrophotometric determination of the ammonia concentration before and after treatment of the plasma with glutaminase (EC 3.5.1.2). Plasma glutamine concentration did not fall in the immediate post-exercise period [pre-exercise 681 (23) μM compared with 663 (46) μM at 5 min post-exercise, mean (SEM)], but fell to 572 (35) μM at 5 h post-exercise (P < 0.05 compared with pre-exercise). Plasma lactate concentration rose to 8.8 (1.0) mM at the end of exercise and fell to 1.8 (0.4) mM at 1 h post-exercise, but plasma concentrations of free fatty acids and β-hydroxybutyrate both rose substantially in the post-exercise period (to 240% and 400% of pre-exercise levels, respectively). The circulating leucocyte count increased significantly during exercise (P < 0.01), continued to increase in the hours following exercise and peaked at 2.5 h post-exercise (mainly due to a neutrophilia). The fall in the plasma glutamine concentration at 5 h post-exercise could be due to increased renal uptake of glutamine, which generally occurs in conditions of metabolic acidosis or due to a greater removal of glutamine from the plasma resulting from the elevated circulating leucocyte count. Accepted: 22 October 1997  相似文献   

17.
The effects of concentration of amino acids, nitrate, and ammonium on the growth and taxol production in cultures of cell line TY-21 of Taxus yunnanensis were investigated. Addition of 20 different amino acids each at 15–20 mg l–1 to B5 medium significantly improved callus growth but inhibited taxol formation in the cultures. The optimum nitrate concentration was 20–30 mM for both growth and taxol production. Ammonium greatly suppressed growth but strongly promoted taxol formation in the cells when it was the sole inorganic nitrogen in the medium. Culturing the suspension cells in nitrate-containing medium for 15 days and then in a medium in which ammonium was the sole inorganic nitrogen for 7 days increased taxol yield by 104%, reaching up to 28.1 mg l–1.  相似文献   

18.
The uptake of glutamine was studied in Bacillus pasteurii DSM 33. Only one uptake system was detected in the concentration range studied (between 1 and 100 M glutamine) which exhibited Michaelis-Menten saturation kinetics, with an apparent K t of 10.7 (±3.5) M glutamine. The uptake was sodium-dependent (apparent K t=0.2 mM Na+); none of several monovalent cations tested was able to replace sodium in the uptake reaction. Ionophores interfering with proton, sodium or potassium gradients across membranes strongly inhibited uptake of glutamine. Low uptake rates correlating with low potassium content and an acidic cytoplasm were measured in cells grown at high ammonium1 concentrations. Ammonium and other permeant amines as well as potassium stimulated the uptake reaction in these cells, leading to an increase of up to 100-fold in V max without affecting the affinity of the uptake system. In cells grown at low concentrations of ammonium, an alkaline cytoplasm and both high glutamine uptake activities and potassium content were measured; the uptake reaction was not further stimulated by permeant amines or potassium in such cells. Growth of the strain was inhibited by Tris at high concentrations; this inhibition was relieved by the addition of increasing amounts of ammonium.Abbreviations CCCP carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide This work is dedicated to Prof. Dr. H. Kaltwasser on the occasion of his 60th birthday  相似文献   

19.
Corynebacterium glutamicum ATCC 17965 was cultivated in a 4-L batch aerated fermentor with glucose, fructose and mixtures of these two sugars in various proportions as carbon sources and with different concentrations of minerals and vitamins. A multilayer centrifugation technique was devised to obtain cell extracts in order to assess intracellular production of glutamate and partitioning between intracellular and extracellular spaces for lactate and acetate, the main by-products produced during the growth phase. Glutamate production increased with the proportion of glucose in the carbon source. The average value for the intracellular concentration of glutamate obtained with basic glucose medium was increased three-fold when initial concentrations of vitamins and minerals were increased four-fold. In this case, overall production of glutamate (16.3 mM) reached the highest value obtained. Production of acetate was weak on all media types (< 1.6 mm). it was the same for lactate synthesis in media where glucose remained the major carbon source (< 2.3 mm). production of lactate was significantly higher on media where fructose was the main carbon source (> 10 mM to 60 mM). The increase in lactate production and the decrease in glutamate production were correlated to a modification of carbon flux distribution between the metabolic pathways as the fructose proportion was increased. An increase in the concentration of minerals favoured production of glutamate during growth. This was correlated with an increase in the NADPH,H+ production rate. Received 16 January 1996/ Accepted in revised form 14 January 1997  相似文献   

20.
In the past few years, Drosophila melanogaster cells have been employed for recombinant protein production purposes, and a comprehensive knowledge of their metabolism is essential for process optimization. In this work, the kinetic response of a Schneider S2 cell line, grown in shake flasks, in two different culture media, the serum-free SF900-II® and the serum-supplemented TC-100, was evaluated. Cell growth, amino acids and glucose uptake, and lactate synthesis were measured allowing the calculation of kinetic parameters. The results show that S2 cells metabolism was able to adjust to different environmental situations, as determined by medium formulation, as well as by the particular situation resulting from the culture conditions. Cells attained a 163% higher final cell concentration (1.4 × 107 cells mL−1) in SF900 II® medium, when compared to serum-supplemented TC-100 medium. Also, a maximum specific cell growth rate 52% higher in SF900 II® medium, when compared to serum-supplemented TC-100 one, was observed. Glutamine was the growth limiting factor in SF900 II® medium, while glucose, sometimes associated with glutamine, controlled growth in serum-supplemented TC-100 medium based formulation. The different pattern of lactate production is an example of the versatility of the metabolism of these cells. This by-product was produced only in glutamine limitation, but the amount synthesized depended not only on the excess glucose, but on other medium components. Therefore, in serum-supplemented TC-100 medium a much smaller lactate amount was generated. Besides, glucose was identified not only as a growth limiting factor, but also as a viability limiting factor, since its depletion accelerated cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号