首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH > or = 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:H7, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. 55Fe transport assays confirm the ferrous iron specificity of EfeUOB.  相似文献   

2.
Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH > or = 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:H7, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. 55Fe transport assays confirm the ferrous iron specificity of EfeUOB.  相似文献   

3.
EfeUOB-like tripartite systems are widespread in bacteria and in many cases they are encoded by genes organized into iron-regulated operons. They consist of: EfeU, a protein similar to the yeast iron permease Ftrp1; EfeO, an extracytoplasmic protein of unknown function and EfeB, also an extracytoplasmic protein with heme peroxidase activity, belonging to the DyP family. Many bacterial EfeUOB systems have been implicated in iron uptake, but a prefential iron source remains undetermined. Nevertheless, in the case of Escherichia coli, the EfeUOB system has been shown to recognize heme and to allow extracytoplasmic heme iron extraction via a deferrochelation reaction. Given the high level of sequence conservations between EfeUOB orthologs, we hypothesized that heme might be the physiological iron substrate for the other orthologous systems. To test this hypothesis, we undertook characterization of the Staphylococcus aureus FepABC system. Results presented here indicate: i) that the S. aureus FepB protein binds both heme and PPIX with high affinity, like EfeB, the E. coli ortholog; ii) that it has low peroxidase activity, comparable to that of EfeB; iii) that both FepA and FepB drive heme iron utilization, and both are required for this activity and iv) that the E. coli FepA ortholog (EfeO) cannot replace FepA in FepB-driven iron release from heme indicating protein specificity in these activities. Our results show that the function in heme iron extraction is conserved in the two orthologous systems.  相似文献   

4.
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.  相似文献   

5.
6.
Saccharomyces cerevisiae expresses two proteins that together support high‐affinity Fe‐uptake. These are a multicopper oxidase, Fet3p, with specificity towards Fe2+ and a ferric iron permease, Ftr1p, which supports Fe‐accumulation. Homologues of the genes encoding these two proteins are found in all fungal genomes including those for the pathogens, Candida albicans and Cryptococcus neoformans. At least one of these loci represents a virulence factor for each pathogen suggesting that this complex would be an appropriate pharmacologic target. However, the mechanism by which this protein pair supports Fe‐uptake in any fungal pathogen has not been elucidated. Taking advantage of the robust molecular genetics available in S. cerevisiae, we identify the two of five candidate ferroxidases likely involved in high‐affinity Fe‐uptake in C. albicans, Fet31 and Fet34. Both localize to the yeast plasma membrane and both support Fe‐uptake along with an Ftr1 protein, either from C. albicans or from S. cerevisiae. We express and characterize Fet34, demonstrating that it is functionally homologous to ScFet3p. Using S. cerevisiae as host for the functional expression of the C. albicans Fe‐uptake proteins, we demonstrate that they support a mechanism of Fe‐trafficking that involves channelling of the CaFet34‐generated Fe3+ directly to CaFtr1 for transport into the cytoplasm.  相似文献   

7.
High affinity iron uptake in fungi is supported by a plasma membrane protein complex that includes a multicopper ferroxidase enzyme and a ferric iron permease. In Saccharomyces cerevisiae, this complex is composed of the ferroxidase Fet3p and the permease Ftr1p. Fe(II) serves as substrate for Fe-uptake by being substrate for Fet3p; the resulting Fet3p-produced Fe(III) is then transported across the membrane via Ftr1p. A model of metabolite channeling of this Fe(III) is tested here by first constructing and kinetically characterizing in Fe-uptake two Fet3p-Ftr1p chimeras in which the multicopper oxidase/ferroxidase domain of Fet3p has been fused to the Ftr1p iron permease. Although the bifunctional chimeras are as kinetically efficient in Fe-uptake as is the wild type two-component system, they lack the adaptability and fidelity in Fe-uptake of the wild type. Specifically, Fe-uptake through the Fet3p, Ftr1p complex is insensitive to a potential Fe(III) trapping agent - citrate - whereas Fe-uptake via the chimeric proteins is competitively inhibited by this Fe(III) chelator. This inhibition does not appear to be due to scavenging Fet3p-produced Fe(III) that is in equilibrium with bulk solvent but could be due to leakiness to citrate found in the bifunctional but not the two-component system. The data are consistent with a channeling model of Fe-trafficking in the Fet3p, Ftr1p complex and suggest that in this system, Fet3p serves as a redox sieve that presents Fe(III) specifically for permeation through Ftr1p.  相似文献   

8.
Fet3, the multicopper oxidase of yeast, oxidizes extracellular ferrous iron which is then transported into the cell through the permease Ftr1. A three-dimensional model structure of Fet3 has been derived by homology modeling. Fet3 consists of three cupredoxin domains joined by a trinuclear copper cluster which is connected to the blue copper site located in the third domain. Close to this site, which is the primary electron acceptor from the substrate, residues for a potential iron binding site could be identified. The surface disposition of negatively charged residues suggests that Fet3 can translocate Fe(3+) to the permease Ftr1 through a pathway under electrostatic guidance.  相似文献   

9.
The high affinity iron uptake complex in the yeast plasma membrane (PM) consists of the ferroxidase, Fet3p, and the ferric iron permease, Ftr1p. We used a combination of yeast two-hybrid analysis, confocal fluorescence microscopy, and fluorescence resonance energy transfer (FRET) quantification to delineate the motifs in the two proteins required for assembly and maturation into an uptake-competent complex. The cytoplasmic, carboxyl-terminal domain of each protein contains a four-residue motif adjacent to the cytoplasm-PM interface that supports an interaction between the proteins. This interaction has been quantified by two-hybrid analysis and is required for assembly and trafficking of the complex to the PM and for the approximately 13% maximum FRET efficiency determined. In contrast, the Fet3p transmembrane domain (TM) can be exchanged with the TM domain from the vacuolar ferroxidase, Fet5p, with no loss of assembly and trafficking. A carboxyl-terminal interaction between the vacuolar proteins, Fet5p and Fth1p, also was quantified. As a measure of the specificity of interaction, no interaction between heterologous ferroxidase permease pairs was observed. Also, whereas FRET was quantified between fluorescent fusions of the copper permease (monomers), Ctr1p, none was observed between Fet3p and Ctr1p. The results are consistent with a (minimal) heterodimer model of the Fet3p.Ftr1p complex that supports the trafficking of iron from Fet3p to Ftr1p for iron permeation across the yeast PM.  相似文献   

10.
11.
The yeast FET3 gene encodes an integral membrane multicopper oxidase required for high-affinity iron uptake. The FET4 gene encodes an Fe(II) transporter required for low-affinity uptake. To identify other yeast genes involved in iron uptake, we isolated genes that could, when overexpressed, suppress the iron-limited growth defect of a fet3 fet4 mutant. The FET5 gene was isolated in this screen and it encodes a multicopper oxidase closely related to Fet3p. Several observations indicate that Fet5p plays a role analogous to Fet3p in iron transport. Suppression of the fet3 fet4 mutant phenotype by FET5 overexpression required the putative FTR1 transporter subunit of the high-affinity system. Fet5p is an integral membrane protein whose oxidase domain is located on the cell surface or within an intracellular compartment. Oxidase activity measured in cells with altered levels of FET5 expression suggested that Fet5p is a functional oxidase. FET5 overexpression increased the rate of iron uptake by a novel uptake system. Finally, FET5 mRNA levels are regulated by iron and are increased in cells grown in iron-limited media. These results suggest that Fet5p normally plays a role in the transport of iron. Received: 12 May 1997 / Accepted: 4 July 1997  相似文献   

12.
High affinity iron uptake in yeast is carried out by a multicomponent system formed by the ferroxidase Fet3p and the iron permease Ftr1p. The currently accepted model predicts that Fet3p and Ftr1p are functionally associated, however, a structural interaction between these two proteins has not been proven yet. The methylotrophic yeast Pichia pastoris has been used to perform cross-linking studies aimed to demonstrate the existence of a Fet3p-Ftr1p complex. Cross-linking of membrane suspensions with the membrane-impermeable reagents DTSSP and BS(3) has evidenced the presence of a high molecular weight band with Fet3p oxidase activity. This band has been purified and subjected to N-terminal sequence analysis. Two sequences were found in the cross-linked species, one of which could be assigned to Fet3p and the other to Ftr1p. This is the first experimental demonstration that Fet3p and Ftr1p are physically associated.  相似文献   

13.
Fre1p is a metalloreductase in the yeast plasma membrane that is essential to uptake of environmental Cu2+ and Fe3+. Fet3p is a multicopper oxidase in this membrane essential for high affinity iron uptake. In the uptake of Fe3+, Fre1p produces Fe2+ that is a substrate for Fet3p; the Fe3+ produced by Fet3p is a ligand for the iron permease, Ftr1p. Deletion of FET3 leads to iron deficiency; this deletion also causes a copper sensitivity not seen in wild type. Deletion of FTR1 leads to copper sensitivity also. Production in the ftr1delta strain of an iron-uptake negative Ftr1p mutant, Ftr1p(RAGLA), suppressed this copper sensitivity. This Ftr1p mutant supported the plasma membrane targeting of active Fet3p that is blocked in the parental ftr1delta strain. A ferroxidase-negative Fet3p did not suppress the copper sensitivity in a fet3delta strain, although it supported the plasma membrane localization of the Fet3p.Ftr1p complex. Thus, loss of membrane-associated Fet3p oxidase activity correlated with copper sensitivity. Furthermore, in vitro Cu1+ was shown to be an excellent substrate for Fet3p. Last, the copper sensitivity of the fet3delta strain was suppressed by co-deletion of FRE1, suggesting that the cytotoxic species was Cu1+. In contrast, deletion of CTR1 or of FET4 did not suppress the copper sensitivity in the fet3delta strain; these genes encode the two major copper transporters in laboratory yeast strains. This result indicated that the apparent cuprous ion toxicity was not due to excess intracellular copper. These biochemical and physiologic results indicate that at least with respect to cuprous and ferrous ions, Fet3p can be considered a metallo-oxidase and appears to play an essential role in both iron and copper homeostasis in yeast. Its functional homologs, e.g. ceruloplasmin and hephaestin, could play a similar role in mammals.  相似文献   

14.
Endocytosed proteins are either delivered to the lysosome to be degraded or are exported from the endosomal system and delivered to other organelles. Sorting of the Saccharomyces cerevisiae reductive iron transporter, composed of the Fet3 and Ftr1 proteins, in the endosomal system is regulated by available iron; in iron-starved cells, Fet3-Ftr1 is sorted by Snx3/Grd19 and retromer into a recycling pathway that delivers it back to the plasma membrane, but when starved cells are exposed to iron, Fet3-Ftr1 is targeted to the lysosome-like vacuole and is degraded. We report that iron-induced endocytosis of Fet3-Ftr1 is independent of Fet3-Ftr1 ubiquitylation, and after endocytosis, degradation of Fet3-Ftr1 is mediated by the multivesicular body (MVB) sorting pathway. In mutant cells lacking any component of the ESCRT protein-dependent MVB sorting machinery, the Rsp5 ubiquitin ligase, or in wild-type cells expressing Fet3-Ftr1 lacking cytosolic lysyl ubiquitin acceptor sites, Fet3-Ftr1 is constitutively sorted into the recycling pathway independent of iron status. In the presence and absence of iron, Fet3-Ftr1 transits an endosomal compartment where a subunit of the MVB sorting receptor (Vps27), Snx3/Grd19, and retromer proteins colocalize. We propose that this endosome is where Rsp5 ubiquitylates Fet3-Ftr1 and where the recycling and degradative pathways diverge.  相似文献   

15.
Kwok EY  Severance S  Kosman DJ 《Biochemistry》2006,45(20):6317-6327
In high-affinity iron uptake in the yeast Saccharomyces cerevisiae, Fe(II) is oxidized to Fe(III) by the multicopper oxidase, Fet3p, and the Fe(III) produced is transported into the cell via the iron permease, Ftr1p. These two proteins are likely part of a heterodimeric or higher order complex in the yeast plasma membrane. We provide kinetic evidence that the Fet3p-produced Fe(III) is trafficked to Ftr1p for permeation by a classic metabolite channeling mechanism. We examine the (59)Fe uptake kinetics for a number of complexes containing mutant forms of both Fet3p and Ftr1p and demonstrate that a residue in one protein interacts with one in the other protein along the iron trafficking pathway as would be expected in a channeling process. We show that, as a result of some of these mutations, iron trafficking becomes sensitive to an added Fe(III) chelator that inhibits uptake in a strictly competitive manner. This inhibition is not strongly dependent on the chelator strength, however, suggesting that Fe(III) dissociation from the iron uptake complex, if it occurs, is kinetically slow relative to iron permeation. Metabolite channeling is a common feature of multifunctional enzymes. We constructed the analogous ferroxidase, permease chimera and demonstrate that it supports iron uptake with a kinetic pattern consistent with a channeling mechanism. By analogy to the Fe(III) trafficking that leads to the mineralization of the ferritin core, we propose that ferric iron channeling is a conserved feature of iron homeostasis in aerobic organisms.  相似文献   

16.
Glycosylation is essential to the maintenance of protein quality in the vesicular protein trafficking pathway in eukaryotic cells. Using the yeast multicopper oxidase, Fet3p, the hypothesis is tested that core glycosylation suppresses Fet3p nascent chain aggregation during synthesis into the endoplasmic reticulum (ER). Fet3p has 11 crystallographically mapped N‐linked core glycan units. Assembly of four of these units is specifically required for localization of Fet3p to the plasma membrane (PM). Fet3 protein lacking any one of these glycan units is found in an intracellular high‐molecular mass species resolvable by blue native gel electrophoresis. Individually, the remaining glycan moieties are not required for ER exit; however, serial deletion of these by N → A substitution correlates with these desglycan species failure to exit the ER. Desglycan Fet3 proteins that localize to the PM are wild type in function indicating that the missing carbohydrate is not required for native structure and biologic activity. This native function includes the interaction with the iron permease, Ftr1p, and wild type high‐affinity iron uptake activity. The four essential sequons are found within relatively nonpolar regions located in surface recesses and are strongly conserved among fungal Fet3 proteins. The remaining N‐linked sites are found in more surface exposed, less nonpolar environments, and their conservation is weak or absent. The data indicate that in Fet3p the N‐linked glycan has little effect on the enzyme's molecular activity but is critical to its cellular activity by maximizing the protein's exit from the ER and assembly into a functional iron uptake complex.  相似文献   

17.
The Fet3 protein in Saccharomyces cerevisiae is a multicopper oxidase tethered to the outer surface of the yeast plasma membrane. Fet3p catalyzes the oxidation of Fe(2+) to Fe(3+); this ferroxidation reaction is an obligatory first step in high-affinity iron uptake through the permease Ftr1p. Here, kinetic analyses of several Fet3p mutants identify residues that contribute to the specificity that Fet3p has for Fe(2+), one of which is essential also to the coupling of the ferroxidase and uptake processes. The spectral and kinetic properties of the D278A, E185D and A, Y354F and A, and E185A/Y354A mutants of a soluble form of Fet3p showed that all of the mutants exhibited the normal absorbance at 330 nm and 608 nm due to the type 3 and type 1 copper sites in Fet3p, respectively. The EPR spectra of the mutants were also equivalent to wild-type, showing that the type 1 and type 2 Cu(II) sites in the proteins were not perturbed. The only marked kinetic defects measured in vitro were increases in K(M) for Fe(2+) exhibited by the D278A, E185A, Y354A, and E185A/Y354A mutants. These results suggest that these three residues contribute to the ferroxidase specificity site in Fet3p. In vivo analysis of these mutant proteins in their membrane-bound form showed that only E185 mutants exhibited kinetic defects in (59)Fe uptake. For the Fet3p(E185D) mutant, K(M) for iron was 300-fold greater than the wild-type K(M), while Fet3p(E185A) was completely inactive in support of iron uptake. In situ fluorescence demonstrated that all of the mutant Fet3 proteins, in complex with an Ftr1p:YFP fusion protein, were trafficked normally to the plasma membrane. These results suggest that E185 contributes to Fe(2+ )binding to Fet3p and to the subsequent trafficking of the Fe(3+) produced to Ftr1p.  相似文献   

18.
Endoplasmic reticulum (ER) quality control is a conserved process by which misfolded or unassembled proteins are selectively retained in the endoplasmic reticulum (ER). Failure in oligomerization of multisubunit membrane proteins is one of the events that triggers ER quality control. The transmembrane domains (TMDs) of unassembled subunits are determinants of ER retention in many cases, although the mechanism of the TMD-mediated sorting of unassembled subunits remains elusive. We studied a yeast iron transporter complex on the cell surface as a new model system for ER quality control. When Fet3p, a transmembrane subunit, is not assembled with the other membrane subunit, Ftr1p, unassembled Fet3p is exclusively localized to the ER at steady state. The TMD of Fet3p contains a determinant for this process. However, pulse-chase analysis and in vitro budding assays indicate that unassembled Fet3p rapidly escapes from the ER. Furthermore, Rer1p, a retrieval receptor for ER-resident membrane proteins in the Golgi, is responsible for the TMD-dependent ER retrieval of unassembled Fet3p. These findings provide clear evidence that the ER quality control of unassembled membrane proteins can be achieved by retrieval from the Golgi and that Rer1p serves as a specific sorting receptor in this process.  相似文献   

19.
A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 Å resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.  相似文献   

20.
The yeast FET3 gene encodes an integral membrane multicopper oxidase required for high-affinity iron uptake. The FET4 gene encodes an Fe(II) transporter required for low-affinity uptake. To identify other yeast genes involved in iron uptake, we isolated genes that could, when overexpressed, suppress the iron-limited growth defect of a fet3 fet4 mutant. The FET5 gene was isolated in this screen and it encodes a multicopper oxidase closely related to Fet3p. Several observations indicate that Fet5p plays a role analogous to Fet3p in iron transport. Suppression of the fet3 fet4 mutant phenotype by FET5 overexpression required the putative FTR1 transporter subunit of the high-affinity system. Fet5p is an integral membrane protein whose oxidase domain is located on the cell surface or within an intracellular compartment. Oxidase activity measured in cells with altered levels of FET5 expression suggested that Fet5p is a functional oxidase. FET5 overexpression increased the rate of iron uptake by a novel uptake system. Finally, FET5 mRNA levels are regulated by iron and are increased in cells grown in iron-limited media. These results suggest that Fet5p normally plays a role in the transport of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号