共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal allocation theory predicts that growth is allocated between the shoot and the roots so that the uptake of the
most limiting resource is increased. Allocation is dynamic due to resource depletion, interaction with competitors, and the
allometry of growth. We assessed the effects of intra- and inter-specific competition on growth and resource allocation of
the meadow species Ranunculus acris and Agrostis capillaris, grown in environments with high (+) or low (−) availability of light (L) and nutrients (N). We took samples twice a week
over the 7 weeks experiment, to follow the changes in root-to-shoot ratios in plants of different sizes, and carried out a
larger scale harvest at the end of the experiment. Of all the tested factors, availability of nutrients had the largest effect
on the growth rate and shoot-to-root allocation in both species, although both competition and light had significant effects
as well. The highest root-to-shoot ratios were measured from the L+N− treatment, and the lowest from the L−N+ treatment, as
predicted by the optimal allocation theory. Competition changed resource allocation, but not always toward acquiring the resource
that is most limiting to growth. We thus conclude that the greatest variation in shoot-to-root allocation was due to the resource
availability and the effects of competition were small, probably due to low density of plants in the experiment. 相似文献
2.
We study a series of spatially implicit lottery models in which two competing plant species, with and without defensive traits, are grazed by a herbivore in a homogeneous habitat. One species (palatable) has no defensive traits, while the other (defended) has defensive traits but suffers reduced reproduction as the result of an assumed trade-off. Not surprisingly, coexistence of these plants cannot occur when the herbivore density is very low (the palatable plant always wins) or very high (the defended plant wins). At intermediate densities, however, herbivory can mediate plant coexistence, even in a homogeneous environment. If the herbivore eats several plants per bite, and its forage-selection depends on the average palatability of the plants it eats, then palatable species in the immediate neighbourhood of defended plants may be more likely to persist (associational resistance) even at higher grazing pressure. If the herbivore shows a positive numerical response to the average palatability of the habitat as a whole, then both plant populations are stabilized and coexistence is promoted, because both species obtain a minority advantage through the negative feedback caused by herbivory. If the herbivore exhibits both of these traits, the system may have at most two non-trivial equilibria, one of which is stable and the other unstable. This means that coexistence in such a system is vulnerable to large fluctuations in herbivore density and identity, and this has implications for conservation in systems where large herbivores are managed to promote plant diversity. 相似文献
3.
4.
Abstract. Plant traits which may give an indication of a plant's strategy for nutrient acquisition and regeneration are known for numerous grassland species. This study aimed to establish whether there is any relationship between two plant traits: specific leaf area (SLA) and number of reproductive tillers, and sward structural characteristics which influence herbage intake by grazers (bulk density and digestibility, leaf:stem ratio). Comparison is made for nutrient‐rich (Dactylis glomerata) and nutrient‐poor (Festuca rubra) grass species. We hypothesized that these traits are responsive to environmental gradients and also act on the processes of the ecosystem. Both grasses were compared with two P‐fertilizer rates in two localities (200 and 1300 m a.s.l.) which differed in their temperature:radiation ratios. For the vegetative phase SLA was well correlated with sward characteristics: D. glomerata, which has the higher SLA, has the lower bulk density and higher digestibility. The values of SLA and vegetation bulk density varied according to growing conditions (P‐rate and temperature:radiation ratio), but the ranking of the species remained the same because the phenotypic plasticity that exists for plant traits was also observed for sward structure and composition. That suggested the possibility of grouping natural grassland species for their relevant characteristics for grazers according to SLA values. Over the reproductive phase, the proportion of stems was well correlated to the percentage of reproductive tillers. However, the percentage of reproductive tillers was a very plastic trait for both species, depending on the growing conditions, and resulting in a density‐dependent effect, particularly for F. rubra. The species studied were too plastic and too similar in their regenerative strategy so that there is no unique relationship between percentage of reproductive tillers and stem proportion, regardless of the species and the growing conditions. The number of reproductive tillers is not a suitable plant trait which could be used to rank species for leaf and stem proportions in the sward. 相似文献
5.
Revealing historic invasion patterns and potential invasion sites for two non-native plant species 总被引:1,自引:0,他引:1
The historical spatio-temporal distribution of invasive species is rarely documented, hampering efforts to understand invasion dynamics, especially at regional scales. Reconstructing historical invasions through use of herbarium records combined with spatial trend analysis and modeling can elucidate spreading patterns and identify susceptible habitats before invasion occurs. Two perennial species were chosen to contrast historic and potential phytogeographies: Japanese knotweed (Polygonum cuspidatum), introduced intentionally across the US; and mugwort (Artemisia vulgaris), introduced largely accidentally to coastal areas. Spatial analysis revealed that early in the invasion, both species have a stochastic distribution across the contiguous US, but east of the 90(th) meridian, which approximates the Mississippi River, quickly spread to adjacent counties in subsequent decades. In contrast, in locations west of the 90(th) meridian, many populations never spread outside the founding county, probably a result of encountering unfavorable environmental conditions. Regression analysis using variables categorized as environmental or anthropogenic accounted for 24% (Japanese knotweed) and 30% (mugwort) of the variation in the current distribution of each species. Results show very few counties with high habitat suitability (>/=80%) remain un-invaded (5 for Japanese knotweed and 6 for mugwort), suggesting these perennials are reaching the limits of large-scale expansion. Despite differences in initial introduction loci and pathways, Japanese knotweed and mugwort demonstrate similar historic patterns of spread and show declining rates of regional expansion. Invasion mitigation efforts should be concentrated on areas identified as highly susceptible that border invaded regions, as both species demonstrate secondary expansion from introduction loci. 相似文献
6.
Demography and habitat availability in territorial occupancy of two competing species 总被引:3,自引:0,他引:3
Although metapopulation dynamics have become the focus of considerable theoretical research, little attention has been paid to its role when examining the coexistence of species. When two or more species live in the same patch network, interspecific interactions may affect their dispersal, colonization and extinction rates, and it may be possible to incorporate competition affecting these parameters in metapopulation models. Here, we extend the territorial occupancy model proposed by Lande to competing species. Our model estimates an equilibrium proportion of habitat occupancy as a function of life‐history parameters, dispersal behavior, habitat suitability and interspecific interactions. Moreover, it could prove to be useful as a tool in the assessment of potential management decisions. We apply the model to the golden Aquila chrysaetos and the Bonelli's eagle Hieraaetus fasciatus, two territorial raptors that coexist in the Mediterranean region, sharing food and nesting habitats. Over the last twenty years, while the golden eagle has maintained and, in some cases, increased its breeding numbers, Bonelli's eagle has suffered a marked decline, with many territories abandoned by the latter now occupied by the former. This suggests that the dynamics of these species could be influenced by interspecific competition. The model identified the relative importance of competition (stable equilibrium that allows long‐term coexistence) and predicted that, when habitat overlap is slight as in the study area, intraspecific dynamics are much more important for the persistence of each species than interspecific ones. Our results suggest that the improvement of territorial bird survival and productivity are the most urgently needed actions to be undertaken in the case of the golden eagle, while for Bonelli's eagle efforts should be focused on improving territorial and non‐territorial bird survival. As habitat conservation measures, the proportion of suitable exclusive habitat should be increased for both species. 相似文献
7.
《Genomics》2023,115(1):110528
Functional enrichment analysis is a cornerstone in bioinformatics as it makes possible to identify functional information by using a gene list as source. Different tools are available to compare gene ontology (GO) terms, based on a directed acyclic graph structure or content-based algorithms which are time-consuming and require a priori information of GO terms. Nevertheless, quantitative procedures to compare GO terms among gene lists and species are not available. Here we present a computational procedure, implemented in R, to infer functional information derived from comparative strategies. GOCompare provides a framework for functional comparative genomics starting from comparable lists from GO terms. The program uses functional enrichment analysis (FEA) results and implement graph theory to identify statistically relevant GO terms for both, GO categories and analyzed species. Thus, GOCompare allows finding new functional information complementing current FEA approaches and extending their use to a comparative perspective. To test our approach GO terms were obtained for a list of aluminum tolerance-associated genes in Oryza sativa subsp. japonica and their orthologues in Arabidopsis thaliana. GOCompare was able to detect functional similarities for reactive oxygen species and ion binding capabilities which are common in plants as molecular mechanisms to tolerate aluminum toxicity. Consequently, the R package exhibited a good performance when implemented in complex datasets, allowing to establish hypothesis that might explain a biological process from a functional perspective, and narrowing down the possible landscapes to design wet lab experiments. 相似文献
8.
9.
We consider the problem of coexistence of two competing species mediated by the presence of a predator. We employ a reaction-diffusion model equation with Lotka-Volterra interaction, and speculate that the possibility of coexistence is,enhanced by differences in the diffusion rates of the prey and their predator. In the limit where the diffusion rate of the prey tends to zero, a new equation is derived and the dynamics of spatial segregation is discussed by means of the interfacial dynamics approach. Also, we show that spatial segregation permits periodic and chaotic dynamics for certain parameter ranges. 相似文献
10.
11.
Electroantennogram (EAG) responses were recorded from two species of oedipodine grasshoppers, Oedaleus decorus asiaticus L. (graminivorous) and Angaracris barabensis Pall. (forbivorous), to volatiles emitted by chopped leaves of ten plant species. Male O. d. asiaticus showed much stronger EAG responses than conspecific females and both sexes of A. barabensis. Sexual differences in EAG responses correspond to different numbers of antennal sensilla of both sexes and to certain behavioural and morphological factors as well. The overall EAG response profiles of the two grasshopper species to the ten plant odours were similar. However, adaptation to host odour might have occurred because of differences in their feeding habits. Females of the graminivorous O. d. asiaticus possess a significantly higher olfactory sensitivity for poaceous plant species than A. barabensis, while the forbivorous A. barabensis showed significantly higher EAG responses to Allium senescens (Liliaceae), and a tendency of high responses to composite plant species in comparison with O. d. asiaticus. 相似文献
12.
We present an index for the dissimilarity/distance between geographical distributions based on reporting rates recorded on a regular lattice. Reporting rate data are common, for example, in bird atlas projects where observers fill in check lists of encountered species in a particular area. Our index is a variation of the Euclidean distance, with the contribution of each grid cell weighted by the number of checklists collected for the grid cell, and a scaling factor to ensure that the dissimilarity ranges between zero and one. Reporting rates were transformed to ordered percentile classes to make species with different mean reporting rates comparable. The index was developed for the comparison of distributions of The Atlas of Southern African Birds . We illustrate the dissimilarity index comparing distributions of whydahs and indigobirds (widowfinches), which are specialized brood parasites, to the distributions of their hosts: waxbills and other finches. 相似文献
13.
Collins Jared Amwatta Mullah Kari Klanderud Ørjan Totland Bernard Kigomo 《African Journal of Ecology》2014,52(1):77-87
In recent years, there have been considerable efforts to restore degraded tropical montane forests through active restoration using indigenous tree species. However, little is known about how these species used for restoration influence other species. In this study, two potential restoration species, Albizia gummifera and Neoboutonia macrocalyx, are investigated with regard to the relationship between their density and the abundance and richness of other plant species. The study was conducted in a degraded forest consisting of disturbed transition zones and secondary forest. Our results show positive relationships between the density of A. gummifera and the abundance of tree seedling and sapling richness in the transition zones and in the secondary forest. Shrub richness was negatively related to the density of A. gummifera. Abundance and richness of tree saplings and shrubs were positively related to N. macrocalyx density both in the transition zones and in the secondary forest. Herb species richness declined with N. macrocalyx density in the transition zones but increased with N. macrocalyx density in the secondary forest. The positive relationships between the density of the two tree species and species richness of other woody species suggest that both A. gummifera and N. macrocalyx can be suitable for active restoration of degraded mountain forests within their natural range. 相似文献
14.
The effects of ecological and genetic neighbourhood size on the evolution of two competing species 总被引:1,自引:0,他引:1
Masakado Kawata 《Evolutionary ecology》1996,10(6):609-630
Summary Individual-based simulations were conducted to examine the effect of a small ecological neighbourhood (an area in which ecological processes such as density-dependent factors operate) and the genetic neighbourhood size (the size of an area from which the parents may be assumed to be drawn at random) on the coevolution of two competing species. For the simulations, individuals of two consumer species compete for two types of food organisms. Different genotypes (one locus and two alleles) have different efficiencies of food acquisition for different food types. Individual consumer organisms search for food within their home ranges and reproduce depending on the amount of food eaten. The dispersal distance of the offspring follows a normal distribution with a zero mean and
d
standard deviation. Simulations were conducted by varying the home range size, mating area (area from where individuals choose their mates), standard deviation of dispersal distance, food generation time, the reproductive rates of food populations and the sizes and number of independent food populations. Food organisms reproduce either within one population or independently within 16 spatially divided populations. For all the simulations, competitive exclusion was the most frequent outcome and character displacement was the least frequent outcome. Through a 200-generation simulation, the two consumer species could co-exist longer and maintain a polymorphic resource use longer when the home range and mating size were small in 16 spatially divided populations than when random mating and homogeneous interaction occurred within a community (perfect mixing population). For perfect mixing populations, the frequency of character displacement increased as the food generation time became short and the reproductive rates of food decreased. It follows from the results that the sizes of the genetic and ecological neighbourhoods and the mode of resource dynamics can affect the evolution of two competing species. 相似文献
15.
Indirect interaction between two competing species via a shared predator may be an important determinant of population and community dynamics. We studied the effect of predation risk imposed by the least weasel Mustela nivalis nivalis on space use, foraging and activity of two competing vole species, the grey-sided vole Myodes rufocanus, and the bank vole Myodes glareolus. The experiment was conducted in a large indoor arena, consisting of microhabitat structures providing food, shelter, trees for refuge and separated areas with high and low predation risk. Voles were followed for 5 days: 2 days before, 1 day during and 2 days after the presence of weasel. Our results suggest an effect of weasel presence on the vole community. Voles of both species shifted their activity from risky to less risky areas, climbed trees more often and were less active. Seed consumption was not affected by weasel presence. The time spent in the risky and less risky area did not differ between species, but bank voles spent more time in trees than grey-sided voles. Males of both species were more exposed to predation risk than females, i.e. generally spent more time in the risky area. Proportion of time spent in the risky area, the use of area, trees and food stations were sex dependent. Activity and use of trees were species dependent. We found no evidence for despotic distribution between our two species, although bank voles seemed to be more affected by coexistence, since they lost weight during the experiment. Based on our results we conclude that predator response was largely similar between species, while the sex-specific responses dominated. Besides a stronger escape response in the bank vole, the strongest individual differences were sex specific, i.e. males were more prone to take risks in space use and activity. 相似文献
16.
We review some typical features of the dynamics of systems of competing species, described by the Lotka-Volterra equations and give some new results concerning the coexistence of many species and the linear stability of equilibrium states. We also commenton some types of asymptotic behaviors for three-dimensional systems. 相似文献
17.
Spatial and temporal heterogeneity in relative fitness of competing species is a key factor affecting the structure of communities. However, it is not intuitive why species that are ecologically similar should differ in their response to environmental changes. Here we show that two sympatric flycatchers differ in reproductive strategy and in sensitivity to harsh environment. The fitness of collared flycatchers (Ficedula albicollis), which are dominant in interference competition, is more sensitive than the fitness of pied flycatchers (Ficedula hypoleuca) to the seasonal decline in environmental conditions. In order to control for the possibility that this pattern arises solely from differences in microhabitat use (i.e. a local niche differentiation), we performed a partial cross-fostering experiment of young between the two species (i.e. resulting in nests containing young of both species). Our results show that the growth of nestling pied flycatchers is less influenced by the seasonal decline in environmental conditions. We suggest that a life-history trade-off between interference competitive ability and robustness to harsh environment promotes a regional coexistence of the two species. 相似文献
18.
Salinity tolerance of three competing rangeland plant species: Studies in hydroponic culture 下载免费PDF全文
Joseph K. Sagers Blair L. Waldron Joseph Earl Creech Ivan W. Mott Bruce Bugbee 《Ecology and evolution》2017,7(24):10916-10929
Halogeton (Halogeton glomeratus) is an invasive species that displaces Gardner's saltbush (Atriplex gardneri) on saline rangelands, whereas, forage kochia (Bassia prostrata) potentially can rehabilitate these ecosystems. Salinity tolerance has been hypothesized as the predominant factor affecting frequency of these species. This study compared relative salinity tolerance of these species, and tall wheatgrass (Thinopyrum ponticum) and alfalfa (Medicago sativa). Plants were evaluated in hydroponics, eliminating the confounding effects of drought, for 28 days at 0, 150, 200, 300, 400, 600, and 800 mmol/L NaCl. Survival, growth, and ion accumulation were determined. Alfalfa and tall wheatgrass shoot mass were reduced to 32% of the control at 150 mmol/L. Forage kochia survived to 600 mmol/L, but mass was reduced at all salinity levels. Halogeton and Gardner's saltbush increased or maintained shoot mass up to 400 mmol/L. Furthermore, both actively accumulated sodium in shoots, indicating that Na+ was the principle ion in osmotic adjustment, whereas, forage kochia exhibited passive (linear) Na+ accumulation as salinity increased. This study confirmed the halophytic nature of these three species, but, moreover, discovered that Gardner's saltbush was as saline tolerant as halogeton, whereas, forage kochia was less tolerant. Therefore, factors other than salinity tolerance drive these species’ differential persistence in saline‐desert ecosystems. 相似文献
19.
J. J. A. Loon W. H. Frentz F. A. Eeuwijk 《Entomologia Experimentalis et Applicata》1992,62(3):253-260
Electroantennogram (EAG) responses were recorded from females of two related butterfly species, Pieris brassicae L. and P. rapae L. (Lepidoptera: Pieridae) to 23 volatiles of plant origin, 19 of which have been reported to occur in the headspace of their preferred host plants, Brassica and Sinapis species (Cruciferae). In both species, selective responses were observed and the most effective compounds were the 6-carbon fatty acid derivatives trans-hex-2-enal, hexan-1-ol and hexanal, which are common green leaf volatiles. Of the 6 isoprenoids tested, myrcene and geraniol were most effective. Of the 4 crucifer-specific compounds tested, phenylacetonitrile was a distinctly stronger stimulant than the three isothiocyanates in both species. The rank order of mean stimulating effectiveness of all compounds tested was strongly correlated between the two species. Statistical analysis of dose-response relationships for 6 compounds revealed significant differences between compounds. The rank order of effectiveness changed with dose. Exclusive exposure to Sinapis arvensis during larval life and young adulthood resulted in quantitative changes in EAG responses to several compounds in both species, although the overall rank order of effectiveness was strongly correlated between the groups reared on the two host plants. 相似文献
20.
Remediation of storm-water polluted with heavy metals should be possible in percolation systems, ponds, or wetlands. The aim of this work was to find plant species for such systems that are efficient in the uptake of Zn, Cu, Cd, and Pb. Plants were collected from percolation and wetland areas and analyzed for heavy metal concentrations. Results showed that submersed and free-floating plants had the capacity to take up high levels of Cu, Zn, and Pb into their shoots. With roots having a concentration factor above 1, the terrestrial plants show efficient stabilization of Cd and Zn and emergent plants show corresponding stabilisation of Zn. In addition, Potamogeton natans, Alisma plantago-aquatica, and Filipendula ulmaria were used in a controlled experiment. The shoots of P. natans and the roots of A. plantago-aquatica were found to accumulate even higher concentrations of Zn, Cu, and Pb than found in the field-harvested plants. Similar results were found for Cd in shoots and Pb in roots of F. ulmaria. Our conclusion is that submersed plant species seem to be the most efficient for removal of heavy metals from storm-water. 相似文献