首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Possibility of encapsulation of water-soluble proteins into multilayer liposomes of soybean zwitterionic phospholipid mixtures (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)) was investigated. The influence of the PC/PE ratio (w/w) on efficiency of incorporation of the Bowman-Birk soybean proteinase inhibitor (BBI) and aprotinin (BPTI) into liposomes was studied. Protein encapsulation did not affect liposome sizes. Confocal laser scanning microscopy demonstrated that proteins were located in the central part of the spherical particle and also between bilayers. The study of biological (antitrypsin and antichymotrypsin) activity demonstrated partial spatial shielding of active sites of proteins entrapped in liposomes. The effect of an ionic detergent on the activity of the encapsulated BBI and BPTI is consistent with this hypothesis and suggests that this shielding is reversible. Stability of liposomes was examined using three various media modeling gastrointestinal fluids (gastric and intestinal juices and fluids). Data obtained indicate that the prepared liposomes seem to be promising formulations for BBI and BPTI delivery.  相似文献   

2.
Abstract

The interactions of a water-soluble nonmembrane protein aprotinin with multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) from soybean phospholipids were studied using Sephadex G-75 gel chromatography combined with different methods of the analysis of the eluate fractions (fluorescence, light-scattering, turbidity; 31P NMR spectroscopy). The composition of the liposomes mainly containing soybean phosphatidylcholine (PC) was varied by the addition of phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lyso-phosphatidylcholine (lyso-PC). To evaluate the lipid-protein interactions, the amount of aprotinin in the MLV–aprotinin complexes was determined. Lipid–protein interactions were found to strongly depend on the liposome composition, medium pH and ionic strength. These dependencies point to the electrostatic nature of the aprotinin-lipid interactions. 31P NMR spectroscopy of the MLV–aprotinin complexes indicated that aprotinin influences the phospholipid structure in MLV at pH 3.0. In the case of PC:PE:PI and PC:PE:PI:lyso-PC vesicles, aprotinin induced liposome aggregation and a lamellar-to-isotropic phase transition of the phospholipids.  相似文献   

3.
During germination, the content of the major Bowman-Birk proteinase inhibitor (BB-E) in the cotyledons of soybean (Glycine max [L.] Merrill cv. Fiskeby V) seeds decreases, becoming a minor form by the sixth day of germination. One of the three other minor species (BB-D) of this inhibitor in the dry seed increases to become the major form in six-day cotyledons. The other two minor species (BB-C and BB-F) also appear to decrease during germination, but at a slower rate compared to the original major inhibitor form BB-E. By 13 days of germination, no distinct Bowman-Birk inhibitor species can be discerned in the cotyledons. The content of the major Kunitz proteinase inhibitor (K-B) also decreases during germination, but much more slowly. One new form of the Kunitz inhibitor (K-A) becomes apparent by the sixth day. By the 13th day, the proportion of the main isoinhibitor to the late-appearing form is approximately two to one. This difference in the rates of disappearance and appearance of isoinhibitor species in the Bowman-Birk and Kunitz proteinase inhibitor classes suggests a differential metabolism of these two types of proteins and a possible difference in function in the soybean plant.  相似文献   

4.
cDNAs coding for a mature form of glutenin-hydrolyzing trypsin-like proteinase (referred to as glutenin-hydrolyzing proteinase 3 or GHP3) from the insect pest Eurygaster integriceps Put. and a zymogen of this proteinase containing a signal peptide required for protein secretion were cloned into vectors pPIC9 and pPIC3.5, respectively. The constructs were used for protein expression in cells of the methylotrophic yeast Pichia pastoris. The recombinant protein corresponding to the mature form of the proteinase was secreted into the culture medium and possessed proteolytic activity, while the zymogen acquired activity after trypsin treatment. Both recombinant enzymes hydrolyzed high-molecular weight glutenin subunits from wheat of the variety Ege-88 and a range of other soft and durum wheat varieties. Chymotrypsin inhibitor I from potatoes and related inhibitors from seeds of plants of the subclass Asteridae, the Kunitz-type trypsin inhibitor from soybeans, and bovine aprotinin had a weak inhibitory effect on the recombinant proteinases, while the Bowman-Birk trypsin and chymotrypsin inhibitor from soybeans did not interact with these enzymes.  相似文献   

5.
The interaction of native Bowman-Birk soybean protease inhibitor (BBI) and its hydrophobized derivative with multilamellar vesicles of various soybean phospholipids was investigated. Decrease in pH and introduction of negatively charged components to the lipid mixture increased BBI content in the protein-lipid complex. This suggests a contribution of electrostatic forces in the protein-lipid interaction. Protein hydrophobization insignificantly influenced BBI binding to lipids. In the complex with lipids, both proteins (BBI and its hydrophobized derivative) retained high anti-chymotrypsin activity (75-100%), which was not influenced by the presence of the ionic detergent sodium deoxycholate.  相似文献   

6.
The peripheral membrane ATPase MinD is a component of the Min system responsible for correct placement of the division site in Escherichia coli cells. By rapidly migrating from one cell pole to the other, MinD helps to block unwanted septation events at the poles. MinD is an amphitropic protein that is localized to the membrane in its ATP-bound form. A C-terminal domain essential for membrane localization is predicted to be an amphipathic alpha-helix with hydrophobic residues interacting with lipid acyl chains and cationic residues on the opposite face of the helix interacting with the head groups of anionic phospholipids (Szeto, T. H., Rowland, S. L., Rothfield, L. I., and King, G. F. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15693-15698). To investigate whether E. coli MinD displays a preference for anionic phospholipids, we first examined the localization dynamics of a green fluorescent protein-tagged derivative of MinD expressed in a mutant of E. coli that lacks phosphatidylethanolamine. In these cells, which contain only anionic phospholipids (phosphatidylglycerol and cardiolipin), green fluorescent protein-MinD assembled into dynamic focal clusters instead of the broad zones typical of cells with normal phospholipid content. In experiments with liposomes composed of only zwitterionic, only anionic, or a mixture of anionic and zwitterionic phospholipids, purified MinD bound to these liposomes in the presence of ATP with positive cooperativity with respect to the protein concentration and exhibited Hill coefficients of about 2. Oligomerization of MinD on the liposome surface also was detected by fluorescence resonance energy transfer between MinD molecules labeled with different fluorescent probes. The affinity of MinD-ATP for anionic liposomes as well as liposomes composed of both anionic and zwitterionic phospholipids increased 9- and 2-fold, respectively, relative to zwitterionic liposomes. The degree of acyl chain unsaturation contributed positively to binding strength. These results suggest that MinD has a preference for anionic phospholipids and that MinD oscillation behavior, and therefore cell division site selection, may be regulated by membrane phospholipid composition.  相似文献   

7.
Bactericidal properties of aprotinin, a proteinase inhibitor and possibly a defence molecule in bovine species, and of chicken egg white lysozyme, known as muramidase, were investigated. Incubation of various bacteria in the presence of either aprotinin or lysozyme showed that both proteins killed Gram-positive as well as Gram-negative bacteria without addition of complement or EDTA. Denaturation of the two proteins by dithiothreitol did not lead to loss of their bactericidal potency. Electron microscopic examination of Escherichia coli incubated either with lysozyme or aprotinin revealed that the bacterial cytoplasms gradually disintegrated. Both aprotinin and lysozyme were demonstrated within the affected cytoplasm by immunogold labelling. The results suggest that the bactericidal potency of lysozyme is not only due to muramidase activity but also to its cationic and hydrophobic properties. The bactericidal activity of aprotinin is probably also related to both these properties rather than to its activity as proteinase inhibitor.  相似文献   

8.
The formation of complexes of basic pancreatic proteinase inhibitor (BPTI) with multilamellar vesicles (MLV) from six preparations of soybean phospholipids of various composition was studied. When BPTI, a non-membrane protein, interacts with MLV, the vesicles aggregate, forming a precipitate of protein–lipid complexes. The BPTI content in the protein–lipid complexes increases with decreasing pH of the medium and on addition of negatively charged components into the lipid mixture. The protein-induced aggregation of the phospholipid vesicles is suggested to be mainly determined by electrostatic forces. The antiproteinase activity of BPTI in the complexes was rather low but increased up to 70% of the initial activity on addition of an ionic detergent (sodium deoxycholate).  相似文献   

9.
The interactions of a water-soluble nonmembrane protein aprotinin with multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) from soybean phospholipids were studied using Sephadex G-75 gel chromatography combined with different methods of the analysis of the eluate fractions (fluorescence, light-scattering, turbidity; 31P NMR spectroscopy). The composition of the liposomes mainly containing soybean phosphatidylcholine (PC) was varied by the addition of phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lyso-phosphatidylcholine (lyso-PC). To evaluate the lipid-protein interactions, the amount of aprotinin in the MLV-aprotinin complexes was determined. Lipid-protein interactions were found to strongly depend on the liposome composition, medium pH and ionic strength. These dependencies point to the electrostatic nature of the aprotinin-lipid interactions. 31P NMR spectroscopy of the MLV-aprotinin complexes indicated that aprotinin influences the phospholipid structure in MLV at pH 3.0. In the case of PC:PE:PI and PC:PE:PI:lyso-PC vesicles, aprotinin induced liposome aggregation and a lamellar-to-isotropic phase transition of the phospholipids.  相似文献   

10.
A. PELLEGRINI, U. THOMAS, R. VON FELLENBERG AND P. WILD. 1992. Bactericidal properties of aprotinin, a proteinase inhibitor and possibly a defence molecule in bovine species, and of chicken egg white lysozyme, known as muramidase, were investigated. Incubation of various bacteria in the presence of either aprotinin or lysozyme showed that both proteins killed Gram-positive as well as Gram-negative bacteria without addition of complement or EDTA. Denaturation of the two proteins by dithiothreitol did not lead to loss of their bactericidal potency. Electron microscopic examination of Escherichia coli incubated either with lysozyme or aprotinin revealed that the bacterial cytoplasms gradually disintegrated. Both aprotinin and lysozyme were demonstrated within the affected cytoplasm by immunogold labelling. The results suggest that the bactericidal potency of lysozyme is not only due to muramidase activity but also to its cationic and hydrophobic properties. The bactericidal activity of aprotinin is probably also related to both these properties rather than to its activity as proteinase inhibitor.  相似文献   

11.
Molecular cloning and analysis of four potato tuber mRNAs   总被引:15,自引:0,他引:15  
Tuberization in potato is a complex developmental process involving the expression of a specific set of genes leading to the synthesis of tuber proteins. We here report the cloning and analysis of mRNAs encoding tuber proteins. From a potato tuber cDNA library four different recombinants were isolated which hybridized predominantly with tuber mRNAs. Northern blot hybridization experiments showed that three of them, pPATB2, p303 and p340, can be regarded as tuber-specific while the fourth, p322, hybridizes to tuber and stem mRNA. Hybrid-selected in vitro translation and nucleotide sequence analysis indicate that pPATB2 and p303 represent patatin and the proteinase inhibitor II mRNA respectively. Recombinant p322 represents an mRNA encoding a polypeptide having homology with the soybean Bowman-Birk proteinase inhibitor while p340 represents an mRNA encoding a polypeptide showing homology with the winged bean Kunitz trypsin inhibitor. In total, these four polypeptides constitute approximately 50% of the soluble tuber protein. Using Southern blot analysis of potato DNA we estimate that these mRNAs are encoded by small multigene families.  相似文献   

12.
Poly (A)+ RNAs from immature soybean seeds were size fractionated in denaturing sucrose gradients to identify mRNA that directs the cell-free synthesis of the Bowman-Birk protease inhibitor and the related inhibitors PI I–IV. Polypeptides synthesized in vitro were labeled with (35S)-cysteine and (3H)-serine and detected by immunoprecipitation with anti Bowman-Birk and anti PI I–IV sera. Immunoprecipitates of the translation products comigrated on SDS-polyacrylamide gels with the dimeric or trimeric aggregates of the authentic inhibitor proteins, which self-associate under certain conditions. Further evidence that these immunoprecipitates contained authentic polypeptides corresponding to the Bowman-Birk or PI IV inhibitor was shown by sequential amino acid analyses of peptides generated by cleavage with cyanogen bromide.  相似文献   

13.
Different low molecular mass ligands have been used to identify amyloid deposits. Among these markers, the dyes Thioflavin T and Congo Red interact specifically with the beta-sheet structure arranged in a cross-beta conformation, which is characteristic of amyloid. However, the molecular details of this interaction remain unknown. When labelled with technetium-99m, the proteinase inhibitor aprotinin has been shown to represent a very important radiopharmaceutical agent for in vivo imaging of extra-abdominal deposition of amyloid in amyloidosis of the immunoglobulin type. However, no information is available as to whether aprotinin binds other types of amyloid fibrils and on the nature and characteristics of the interaction. The present work shows aprotinin binding to insulin, transthyretin, beta-amyloid peptide and immunoglobulin synthetic amyloid fibrils by a specific dot-blot ligand-binding assay. Aprotinin did not bind amorphous precipitates and/or the soluble fibril precursors. A Ka of 2.9 microM-1 for the binding of aprotinin to insulin amyloid fibrils was determined by Scatchard analysis. In competition experiments, analogues such as an aprotinin variant, a spermadhesin and the soybean trypsin inhibitor were tested and results suggest that both aprotinin and the spermadhesin interact with amyloid fibrils through pairing of beta-sheets of the ligands with exposed structures of the same type at the surface of amyloid deposits. An electrostatic component may also be involved in the binding of aprotinin to amyloid fibrils because important differences in binding constants are observed when substitutions V15L17E52 are introduced in aprotinin; on the other hand beta-sheet containing acidic proteins, such as the soybean trypsin inhibitor, are unable to bind amyloid fibrils.  相似文献   

14.
The serine esterase TL2 from human T4+ lymphocytes is a binding component to HIV-1 glycoprotein gp120 and seems to play a role in the HIV-1 infection mechanism. Recombinant variants of the Kunitz-type serine proteinase inhibitor aprotinin were investigated for their ability to inhibit tryptase TL2 and the binding of gp120 to this enzyme. Furthermore, the viral replication of HIV-1 was investigated in H9 cell cultures under the influence of recombinant aprotinin and bikunin variants. In contrast to native aprotinin, the recombinant variant [Arg15, Phe17, Glu52]aprotinin with a reactive-site sequence homologous to the V3 loop of HIV-1 gp120 showed a specific inhibition of tryptase TL2 (>80%). However, the [Leu15, Phe17, Glu52]aprotinin variant with hydrophobic subsites was the most potent inhibitor of the binding of gp120 to tryptase TL2 (68%). Our results show that the enzyme activity of purified tryptase TL2 is inhibited not only by variants with basic amino acids, but also those with hydrophobic residues in the reactive-site region. Therefore, tryptase TL2 is not a typical trypsin-like or chymotrypsin-like protease. Investigations on inhibition of HIV-1 replication in H9 cell cultures showed that tryptase TL2 is involved in the mechanism of virus internalization into human lymphocytes. The [Leu15, Phe17, Glu52]aprotinin showed a significant retardation of syncytium formation over a period of 5 days in a 1 μM concentration. Similar investigations were performed with recombinant variants of bikunin, the light chain of human inter-α-trypsin inhibitor. Only the single-headed variant [Arg94]82bikunin inhibited slightly the syncytium formation over a period of 2 days in a 2.2 μM concentration. Wild-type bikunin and all full-length variants showed no effect, possibly due to steric hindrance by the second domain of the double-headed inhibitor.  相似文献   

15.
A polyclonal anti-bovine pancreatic trypsin inhibitor (BPTI) IgY was raised in chickens immunised with aprotinin. The anti-BPTI IgY was subsequently isolated from egg yolks and purified to homogeneity by affinity chromatography on immobilised aprotinin and by Superose 6 size exclusion fast protein liquid chromatography (FPLC). Immunoblotting with the chicken IgY demonstrated its specificity for BPTI; 3.9 ng BPTI could be detected by this technique. There was no crossreactivity against alpha1-proteinase inhibitor (human and sheep), inter-alpha-trypsin inhibitor (human and sheep), secretory leucocyte proteinase inhibitor or a range of serine proteinase inhibitory proteins (SPIs) isolated from plant sources (soybean and lima bean trypsin inhibitor, potato trypsin and chymotrypsin inhibitors) or serum SPIs (antithrombin-III, alpha2-macroglobulin). Immunoblotting using the anti-BPTI IgY identified the 6- to 12- and 58-kDa forms of endogenous ovine cartilage SPIs in cartilage extracts, confirming the interrelationship of the ovine cartilage SPIs with BPTI. BPTI-domain SPIs were immunolocalised within mast cells of ovine and bovine duodenum, lung and pancreas, and in ovine and bovine bronchial cartilage chondrocytes, chondrocytes of the superficial and intermediate zones of articular cartilage and in the fibrochondrocytes/chondrocytes of the nucleus  相似文献   

16.
Aprotinin, the most studied serine proteinase inhibitor, was isolated from porcine lung for the first time. The purified porcine aprotinin had an Mr value of ∼7 kDa. It cross-reacted with polyclonal serum anti-commercial aprotinin. About 1 μg porcine aprotinin inhibited 6 μg trypsin whereas 1 μg commercial soybean inhibitor inhibited only 1 μg trypsin. The aprotinin gene was also isolated from porcine lung: the deduced amino acid sequence showed 74% identity to bovine aprotinin.  相似文献   

17.
Summary Endoproteinase(s) was isolated from a freeze-dried powder of larvae of Ostrinia nubilalis using reverse micellar solutions. The inhibition of proteinase was studied in reverse micelles with commercial Bowman-Birk soybean trypsin inhibitor and three trypsin inhibitors recently isolated from ripe cruciferous seeds.  相似文献   

18.
Thioredoxin, reduced either enzymatically with NADPH and NADP-thioredoxin reductase or chemically with dithiothreitol, reduced alpha-amylase and trypsin inhibitor proteins from several sources. Included were cystine-rich seed representatives from wheat (alpha-amylase inhibitors), soybean (Bowman-Birk trypsin inhibitor), and corn (kernel trypsin inhibitor). This system also reduced other trypsin inhibitors: the soybean Kunitz inhibitor, bovine lung aprotinin, and egg white ovoinhibitor and ovomucoid proteins. The ability of these proteins to undergo reduction by thioredoxin was determined by 1) a coupled enzyme activation assay with chloroplast NADP-malate dehydrogenase or fructose-1,6-bisphosphatase, 2) a dye reduction assay with 5',5'-dithiobis(2-nitrobenzoic acid), and 3) a direct reduction method based on the fluorescent probe, monobromobimane, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Reduction experiments with the seed proteins were carried out with thioredoxin from wheat germ (h-type) or Escherichia coli; the corresponding experiments with the animal trypsin inhibitors were carried out with thioredoxin from calf thymus or E. coli. In all cases, thioredoxin appeared to act catalytically; the reduced form of glutathione was without effect. When considered in conjunction with earlier results on purothionin (confirmed and extended in the current study), the new findings suggest that the NADP/thioredoxin system functions in the reduction of protein inhibitors of seeds and animal tissues. These results also raise the question of the occurrence of glutaredoxin in plants, as E. coli glutaredoxin was found to promote the reduction of some but not all of the proteins tested.  相似文献   

19.
The effects of cytochrome c and apocytochrome c on the structural properties of various membrane phospholipids in model systems were compared by binding, calorimetric, permeability, 31P n.m.r. and freeze-fracture experiments. Both cytochrome c and apocytochrome c experience strong interactions only with negatively charged phospholipids; apocytochrome c interacted more strongly than cytochrome c. These interactions are primarily electrostatic but also have a hydrophobic character. Cytochrome c as well as apocytochrome c induces changes in the structure of cardiolipin liposomes as is shown by 31P n.m.r. and freeze-fracture electron microscopy. Cytochrome c does not affect the bilayer structure of phosphatidylserine. In contrast, interaction of apocytochrome c with this phospholipid results in changes of the 31P n.m.r. bilayer spectrum of the liposomes and also particles are observed at the fracture faces. The results are discussed in relation to the import of the protein into the mitochondrion.  相似文献   

20.
The preparation of proteoliposomes from pure phospholipids and partially delipidized proteolipid proteins from Torpedo marmorata electroplax is described. The resulting vesicles are morphologically different from their lipid counterparts, the main feature being a reduction in the number of lamellae. These structures are highly permeable toward Rb+, K+, or glucose. The association between the proteolipid proteins and the phospholipids is not modified by increasing the amount of acidic phospholipids or cholesterol in the liposomes. The partially delipidized proteolipid proteins are capable of reducing the phasetransition temperature of dipalmitoylphosphatidylcholine. It is suggested that during the liposome formation procedure there is an interaction between the proteolipid proteins and the lipids, probably via hydrophobic associations. This gives rise to highly permeable, more fluid structures compared to pure phospholipid vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号