首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different methods, membrane capacitance (C(m)) measurement, amperometry and FM dye labeling were used to investigate the role of extracellular ATP in insulin secretion from rat pancreatic beta cells. We found that extracellular application of ATP mobilized intracellular Ca(2+) stores and synchronously triggered vigorous exocytosis. No influence of ATP on the readily releasable pool of vesicles was observed, which argues against a direct modulation of the secretory machinery at a level downstream of Ca(2+) elevation. The stimulatory effects of ATP were greatly reduced by intracellular perfusion of BAPTA but not EGTA, suggesting a close spatial association of fusion sites with intracellular Ca(2+) releasing sites. ATP-induced Ca(2+) transients and exocytosis were not blocked by thapsigargin (TG), by a ryanodine receptor antagonist or by dissipation of pH in acidic stores by monensin alone, but they were greatly attenuated by IP(3) receptor inhibition as well as ionomycin plus monensin, suggesting involvement of IP(3)-sensitive acidic Ca(2+) stores. Taken together, our data suggest that extracellular ATP triggers exocytosis by mobilizing spatially limited acidic Ca(2+) stores through IP(3) receptors. This mechanism may explain how insulin secretion from the pancreas is coordinated through diffusible ATP that is co-released with insulin.  相似文献   

2.
Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) and cardiovascular-associated mortality. G6PC2 is predominantly expressed in islets, encodes a glucose-6-phosphatase catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, and has been linked with variations in FBG in genome-wide association studies. Deletion of G6pc2 in mice has been shown to lower FBG without affecting fasting plasma insulin levels in vivo. At 5 mM glucose, pancreatic islets from G6pc2 knockout (KO) mice exhibit no glucose cycling, increased glycolytic flux, and enhanced glucose-stimulated insulin secretion (GSIS). However, the broader effects of G6pc2 KO on β-cell metabolism and redox regulation are unknown. Here we used CRISPR/Cas9 gene editing and metabolic flux analysis in βTC3 cells, a murine pancreatic β-cell line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion of G6pc2 led to ∼60% increases in glycolytic and citric acid cycle (CAC) fluxes at both 5 and 11 mM glucose concentrations. Furthermore, intracellular insulin content and GSIS were enhanced by approximately two-fold, along with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative to net glucose uptake revealed upregulation in two NADPH-producing pathways in the CAC. These results demonstrate that G6pc2 regulates GSIS by modulating not only glycolysis but also, independently, citric acid cycle activity in β-cells. Overall, our findings implicate G6PC2 as a potential therapeutic target for enhancing insulin secretion and lowering FBG, which could benefit individuals with prediabetes, T2D, and obesity.  相似文献   

3.
In the present study we investigated the role of Ca(2+) in tetramethylpyrazine (TMP)-induced anion secretion in the human colonic epithelial cell line, Caco-2, using the short-circuit current (I(SC)) technique in conjunction with intracellular Ca(2+) measurements. The results showed that TMP-induced I(SC) response was significantly reduced by 58.8% and 38.3% after inhibiting Ca(2+) ATPase of endoplasmic reticulum (ER) with thapsigargin and mobilizing ER stored Ca(2+) release with ATP, respectively. Conversely, thapsigargin- and ATP-evoked I(SC) responses were also significantly reduced by pretreatment with TMP by 43.2% and 38.5%, respectively. Conversely, removal of extracellular Ca(2+), apical but not basolateral, or the presence of the Ca(2+) chelator (EGTA) significantly increased TMP-induced I(SC) by 47.1% and 37.8%, respectively. Similar to TMP, thapsigargin-induced current increase was also enhanced by chelating extracellular Ca(2+) or in Ca(2+) free solution; however, removal of extracellular Ca(2+) did not significantly affect 3-isobutyl-1-methylxanthine (IBMX)- and forskolin-induced transepithelial current. Measurement of the intracellular concentration of free Ca(2+) ([Ca(2+)](i)) with fura-2/AM showed that TMP could induce an increase in [Ca(2+)](i) but pretreatment with TMP significantly reduced thapsigargin-evoked, but not ATP-induced, [Ca(2+)](i) increase. These results suggest that the effect of TMP on colonic anion secretion is partly mediated by TMP-increased [Ca(2+)](i) by acting on a target similar to thapsigargin. The observed inhibitory effect of extracellular Ca(2+) on Ca(2+)-dependent anion secretion represents a novel mechanism by which Ca(2+)-dependent regulation of epithelial electrolyte transport may be fine-tuned by extracellular Ca(2+) in the apical domain.  相似文献   

4.
Contributions of L-, N-, and P/Q-type voltage-operated Ca2+ channels to two responses of bovine adrenal chromaffin cells have been studied using the nonreceptor stimulus K+ depolarization. Tyrosine hydroxylase activity and catecholamine secretion were both increased by K+ over a similar concentration range and in a Ca(2+)-dependent manner. At a submaximal concentration of 20 mM K+, tyrosine hydroxylase activation was reduced by nitrendipine but unaffected individually by (+/-)-Bay K 8644, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC. It was fully blocked by combined inhibition of L-, N-, and P/Q-type channels. With a maximal concentration of 50 mM K+, tyrosine hydroxylase activation was unaffected by nitrendipine as well as by each of the other drugs on its own; however, it was reduced by 71 % by combined inhibition of L-, N-, and P/Q-type channels. In contrast, catecholamine secretion with both 20 and 50 mM K+ was enhanced by (+/-)-Bay K 8644, partially inhibited by nitrendipine and omega-conotoxin MVIIC, and completely blocked by a combination of antagonists for L-, N-, and P/Q-type channels. The results show that Ca2+ entry through voltage-operated Ca2+ channels can differentially regulate distinct chromaffin cell responses and that this is an intrinsic property of the mechanisms by which Ca2+ entry activates these responses. It is not dependent on the parallel activation of other signaling events by receptors.  相似文献   

5.
During perifusion with medium deprived of Ca2+, addition of glucose or omission of Na+ resulted in prompt and quantitatively similar inhibitions of 45Ca efflux from β-cell rich pancreatic islets microdissected from ob / ob mice. Glucose had no additional inhibitory effect when Na+ was isoosmotically replaced by sucrose or choline+. When K+ was used as a substitute for Na+, the inhibitory effect of Na+ removal on 45Ca efflux became additive to that of glucose. The observation that glucose can be equally effective in inhibiting 45Ca efflux in the presence or absence of Na+ is difficult to reconcile with the postulate that the Na+-Ca2+ countertransport mechanism is a primary site of action for glucose.  相似文献   

6.
Intracellular Ca2+ is an important regulator of many cellular processes. Besides ion channels and transporters in the plasmalemma, changes in [Ca]i can be mediated by uptake and release mechanisms of internal organelles. Theoretical and experimental procedures are developed aiming to reveal the distribution of internal Ca2+ pools and their role in generating complicated spatial patterns of [Ca]i gradients. Cultured pyramidal neurons from rat hippocampus were loaded with Ca2+-sensitive fluorescent dyes, fura-2 and fluo-3. Cell images were partitioned according to pixel amplitude and highlighted pictures were characterized by their intensity, relative area and connectivity. This approach facilitates the localization of the sites of Ca2+ release from internal stores induced by application of different agents. After each trial, neurons were stained with dyes, acridine orange or DiOC6, which bind preferentially to nucleus and endoplasmic reticulum. A correlation between images confirmed the spatial localization of Ca2+ release sites. Application of the partition procedure also gave a clear evidence for the importance of Ca2+ influx in the mechanism of [Ca]i oscillations.  相似文献   

7.
利用焦锑酸盐和磷酸铅沉淀技术分别对NaHCO3胁迫条件下星星草(Puccinellia tenuiflora)根中Ca2+和Ca2+-ATPase进行超微细胞化学定位研究,旨在进一步探讨Ca2+在NaHCO3胁迫诱导胞内信号转导过程中的作用,以及Ca2+-ATPase活性定位变化与NaHCO3胁迫下星星草抗盐碱能力的关系。结果表明:在正常状态下,根毛区细胞质内Ca2+较少,主要位于质膜附近和液泡中,Ca2+-ATPase主要定位于质膜和液泡膜,有一定活性。在0.448%NaHCO3胁迫下,根毛区细胞质中Ca2+增多,液泡中Ca2+减少,且主要集中于液泡膜附近,质膜和液泡膜Ca2+-ATPase活性明显升高。在1.054%NaHCO3胁迫下,细胞质中分布的Ca2+增多,而液泡中Ca2+极少,Ca2+-ATPase活性也降低。以上结果表明,Ca2+亚细胞定位和Ca2+-ATPase活性变化在星星草响应NaHCO3胁迫的信号传递过程中具有重要作用。  相似文献   

8.
We studied the effects of increased Ca2+ influx on α1‐adrenoceptor‐stimulated InsP formation in adult rat cardiac myocytes. We further examined if such effects could be mediated through a specific α1‐adrenoceptor subtype. [3H]InsP responses to adrenaline were dependent on extracellular Ca2+ concentration, from 0.1 μM to 2 mM, and were completely blocked by Ca2+ removal. However, in cardiac myocytes preloaded with BAPTA, a highly selective calcium chelating agent, Ca2+ concentrations higher than 1 μM had no effect on adrenaline‐stimulated [3H]InsP formation. Taken together these results suggest that [3H]InsP formation induced by α1‐adrenergic stimulation is in part mediated by increased Ca2+ influx. Consistent with this, ionomycin, a calcium ionophore, stimulated [3H]InsP formation. This response was additive with the response to adrenaline stimulation implying that different signaling mechanisms may be involved. In cardiac myocytes treated with the α1B‐adrenoceptor alkylating agent, CEC, [3H]InsP formation remained unaffected by increased Ca2+ concentrations, a pattern similar to that observed when intracellular Ca2+ was chelated with BAPTA. In contrast, addition of the α1A‐subtype antagonist, 5′‐methyl urapidil, did not affect the Ca2+ dependence of [3H]InsP formation. Neither nifedipine, a voltage‐dependent Ca2+ channel blocker nor the inorganic Ca2+ channel blockers, Ni2+ and Co2+, had any effect on adrenaline stimulated [3H]InsP, at concentrations that inhibit Ca2+ channels. The results suggest that in adult rat cardiac myocytes, in addition to G protein‐mediated response, α1‐adrenergic‐stimulated [3H]InsP formation is activated by increased Ca2+ influx mediated by the α1B‐subtype. J. Cell. Biochem. 84: 201–210, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

9.
This study investigated the underlying mechanisms of oxytocin (OT)-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in acutely dispersed myometrial cells from prepartum sows. A dosedependent increase in [Ca2+]i was induced by OT (0.1 nM to 1 μM) in the presence and absence of extracellular Ca2+ ([Ca2+]e). [Ca2+]i was elevated by OT in a biphasic pattern, with a spike followed by a sustained plateau in the presence of [Ca2+]e. However, in the absence of [Ca2+]e, the [Ca2+]i response to OT became monophasic with a lower amplitude and no plateau, and this monophasic increase was abolished by pretreatment with ionomycin, a Ca2+ ionophore. Administration of OT (1 μM) for 15 sec increased inositol 1,4,5-trisphosphate (IP3) formation by 61%. Pretreatment with pertussis toxin (PTX, 1 μg/ml) for 2 hr failed to alter the OT-induced increase in [Ca2+]i and IP3 formation. U-73122 (30 nM to 3 μM), a phospholipase C (PLC) inhibitor, depressed the rise in [Ca2+]i by OT dose dependently. U-73122 (3 μM) also abolished the OT-induced IP3 formation. Thapsigargin (2 μM), an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, did not increase [Ca2+]i. However, it did time-dependently inhibit the OT-induced increase in [Ca2+]i. Nimodipine (1 μM), a Voltage-dependent Ca2+ channel (VDCC) blocker, inhibited the OT-induced plateau by 26%. La3+ (1 μM), a nonspecific Ca2+ channel blocker, abrogated the OT-induced plateau. In whole-cell patch-clamp studies used to evaluate VDCC activities, OT (0.1 μM) increased Ca2+ Current (Ica) by 40% with no apparent changes in the current-voltage relationship. The OT-induced increase in Ica reached the maximum in 5 min, and the increase was abolished by nimodipine (1 μM). These results suggested that (1) activation of OT receptors in porcine myometrium evokes a cascade in the PTX-insensitive G-protein–PLC-IP3 signal transduction, resulting in an increase in [Ca2+]i; (2) the OT-induced increase in [Ca2+]i is characterized by a biphasic pattern, in which the spike is predominately contributed by the intracellular Ca2+ release from the IP3-sensitive pool, and to a lesser extent by Ca2+ influx, whereas the plateau is from increased Ca2+ influx; and (3) the influx is via VDCC and receptor-operated Ca2+ channels. © 1995 Wiley-Liss, Inc.  相似文献   

10.
目的:采用共聚焦显微镜快速二维扫描方式和线扫描方式记录心肌胞内钙瞬变,并分析其优缺点。方法:标本为急性分离的SD大鼠心肌单细胞,胞内钙信号由钙指示剂fluo4-AM标记,其变化由共聚显微镜(LSM510META系统)记录。钙瞬变由局部场刺激诱发,刺激器和共聚焦成像系统之间通过触发连接同步工作。结果:快速二维扫描方式可在二维平面上反映全细胞范围内钙瞬变的动态过程,空间信息较全面;特别地,当心肌细胞由于药物或病理状态的改变而出现胞内钙稳态失衡时,快速二维扫描的结果更有利于了解胞内钙变化;其结果可制成动画,真实而直观地再现心肌细胞胞内钙瞬变的动态过程。线扫描方式的时间分辨率较高,也有一定的空间分辨率,可反映钙瞬变的时空特征,并可分析细胞收缩的情况。二种扫描方式所得的结果在实质上是一致的,但各有其侧重点和优缺点,在反映心肌细胞功能状态方面具有互补作用。结论:两种扫描方式所得的结果综合起来更有利于对胞内钙信号变化的特征和意义进行正确解读。  相似文献   

11.
The cytoplasmic concentrations of Cl([Cl]i) and Ca2+ ([Ca2+]i) were measured with the fluorescent indicators N-(ethoxycarbonylmethyl)-6-methoxyquinilinum bromide (MQAE) and fura-2 in pancreatic β-cells isolated from ob/ob mice. Steady-state [Cl]i in unstimulated β-cells was 34 mM, which is higher than expected from a passive distribution. Increase of the glucose concentration from 3 to 20 mM resulted in an accelerated entry of Cl into β-cells depleted of this ion. The exposure to 20 mM glucose did not affect steady-state [Cl]i either in the absence or presence of furosemide inhibition of Na+, K+, 2 Cl co-transport. Glucose-induced oscillations of [Ca2+]i were transformed into sustained elevation in the presence of 4,4′ diisothiocyanato-dihydrostilbene-2,2′-disulfonic acid (H2DIDS). A similar effect was noted when replacing 25% of extracellular Cl with the more easily permeating anions SCN, I, NO3 or Br. It is concluded that glucose stimulation of the β-cells is coupled to an increase in their Cl permeability and that the oscillatory Ca2+ signalling is critically dependent on transmembrane Cl fluxes.  相似文献   

12.
Contact of Jurkat T-lymphocytes with the extracellular matrix (ECM) protein laminin resulted in long-lasting α6β1-integrin-mediated Ca2+ signalling. Both Ca2+ release from thapsigargin-sensitive Ca2+ stores and capacitative Ca2+ entry via Ca2+ channels sensitive to SKF 96365 constitute important parts of this process. Inhibition of α6β1-integrin-mediated Ca2+ signalling by (1) the src kinase inhibitor PP2, (2) the PLC inhibitor U73122, and (3) the cyclic adenosine diphosphoribose (cADPR) antagonist 7-deaza-8-Br-cADPR indicate the involvement of src tyrosine kinases and the Ca2+-releasing second messengers d-myo-inositol 1,4,5-trisphosphate (InsP3) and cADPR.  相似文献   

13.
Diabetes has been implicated in the dryness of the mouth, loss of taste sensation, sialosis, and other disorders of the oral cavity, by impairment of the salivary glands. The aim of the present study was to examine the plasma membrane, microsomal, and homogenate Ca2+‐ATPase activity in the rat submandibular and parotid salivary glands of streptozotocin‐induced diabetes. We have also examined the influence of the acidosis state on this parameter. Diabetes was induced by an intraperitoneal injection of streptozotocin and acidosis was induced by daily injection of NH4Cl. At 15 and 30 days after diabetes induction, the animals were euthanized and the submandibular and parotid salivary glands were removed and analyzed. Ca2+‐ATPase (total, independent, and dependent) was determined in the homogenate, microsomal, and plasma membranes of the salivary glands of diabetic and control rats. Calcium concentration was also determined in the glands and showed to be higher in the diabetic animals. Ca2+‐ATPase activity was found to be reduced in all cell fractions studied in the diabetic animals compared with control. Similar results were obtained for the submandibular salivary glands of acidotic animals; however in the parotid salivary glands it was found an increase in the enzyme activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
We have studied the effects of cholinegic agonists on the rates of insulin release and the concentrations of diacylglycerol (DAG) and intracellular free Ca2+ ([Ca2+]i) in the β-cell line MIN6. Insulin secretion was stimulated by glucose, by glibenclamide and by bombesin. In the presence of glucose, both acetylcholine (ACh) and carbachol (CCh) produced a sustained increase in the rate of insulin release which was blocked by EGTA or verapamil. The DAG content of MIN6 β-cells was not affected by glucose. Both CCh and ACh evoked an increase in DAG which was maximal after 5 min and returned to basal after 30 min; EGTA abolished the cholinergic-induced increased in DAG. ACh caused a transient rise in [Ca2+]i which was abolished by omission of Ca2+ or by addition of devapamil. Thus, cholinergic stimulation of β-cell insulin release is associated with changes in both [Ca2+]i and DAG. The latter change persists longer than the former and activation of protein kinase C and sensitization of the secretory process to Ca2+ may underlie the prolonged effects of cholinergic agonists on insulin release. However, a secretory response to CCh was still evident after both [Ca2+]i and DAG had returned to control values suggesting that additional mechanisms may be involved.  相似文献   

15.
We investigated the existence of a capacitative Ca2+ entry (CCE) pathway in ROS 17/2.8 osteoblast-like cells and its responsiveness to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. Depletion of inner Ca2+ stores with thapsigargin or 1,25(OH)2D3 in the absence of extracellular Ca2+ transiently elevated cytosolic Ca2+ ([Ca2+]i); after recovery of basal values, Ca2+ re-addition to the medium markedly increased Ca2+ entry, reflecting pre-activation of a CCE pathway. Recovery of the Ca2+ overshoot that followed the induced CCE was mainly mediated by the plasma membrane Ca2+-ATPase. Addition of 1,25(OH)2D3 to the declining phase of the thapsigargin-induced CCE did not modify further [Ca2+]i, indicating that steroid activation of CCE was dependent on store depletion. Pre-treatment with 1 microM Gd3+ inhibited 30% both thapsigargin- and 1,25(OH)2D3-stimulated CCE, whereas 2.5 microM Gd3+ was required for maximal inhibition ( approximately 85%). The activated CCE was permeable to both Mn2+ and Sr2+. Mn2+ entry sensitivity to Gd3+ was the same as that of the CCE. However, 1-microM Gd3+ completely prevented capacitative Sr2+ influx, whereas subsequent Ca2+ re-addition was reduced only 30%. These results suggest that in ROS 17/2.8 cells CCE induced by thapsigargin or 1,25(OH)2D3 is contributed by at least two cation entry pathways: a Ca2+/Mn2+ permeable route insensitive to very low micromolar (1 microM) Gd3+ accounting for most of the CCE and a minor Ca2+/Sr2+/Mn2+ permeable route highly sensitive to 1 microM Gd3+. The Ca2+-mobilizing agonist ATP also stimulated CCE resembling the Ca2+/Sr2+/Mn2+ permeable entry activated by 1,25(OH)2D3. The data demonstrates for the first time, the presence of a hormone-responsive CCE pathway in an osteoblast cell model, raising the possibility that it could be an alternative Ca2+ influx route through which osteotropic agents influence osteoblast Ca2+ homeostasis. Copyright Wiley-Liss, Inc.  相似文献   

16.
Neurotoxic effects of amyloid β peptides are mediated through deregulation of intracellular Ca2+ homeostasis and signaling, but relatively little is known about amyloid β modulation of Ca2+ homeostasis and its pathological influence on glia. Here, we found that amyloid β oligomers caused a cytoplasmic Ca2+ increase in cultured astrocytes, which was reduced by inhibitors of PLC and ER Ca2+ release. Furthermore, amyloid β peptides triggered increased expression of glial fibrillary acidic protein (GFAP), as well as oxidative and ER stress, as indicated by eIF2α phosphorylation and overexpression of chaperone GRP78. These effects were decreased by ryanodine and 2APB, inhibitors of ryanodine receptors and InsP3 receptors, respectively, in both primary cultured astrocytes and organotypic cultures of hippocampus and entorhinal cortex. Importantly, intracerebroventricular injection of amyloid β oligomers triggered overexpression of GFAP and GRP78 in astrocytes of the hippocampal dentate gyrus. These data were validated in a triple‐transgenic mouse model of Alzheimer's disease (AD). Overexpression of GFAP and GRP78 in the hippocampal astrocytes correlated with the amyloid β oligomer load in 12‐month‐old mice, suggesting that this parameter drives astrocytic ER stress and astrogliosis in vivo. Together, these results provide evidence that amyloid β oligomers disrupt ER Ca2+ homeostasis, which induces ER stress that leads to astrogliosis; this mechanism may be relevant to AD pathophysiology.  相似文献   

17.
Thyrotropin-releasing hormone (TRH) may stimulate lactotrophs to increase intracellular Ca(2+) and to secrete prolactin (PRL). In this study, PRL contents in lactotrophs were determined by the sequential cell immunoblot assay (SCIBA) and their changes in intracellular Ca(2+) was analyzed by confocal microscopy. Significant correlations were found in the corresponding parameters between TRH treatments with a recovery interval of 2 h. Measuring the PRL contents after the first TRH treatment and then determining the intracellular Ca(2+) changes after the second TRH treatment revealed four lactotroph subpopulations. Type I cells (51%) showed significant responses of both PRL secretion and intracellular Ca(2+) concentration. Type II cells (22%) increased in PRL secretion, but without changes in intracellular Ca(2+). Type III cells (17%) have increased in intracellular Ca(2+), but without changes in PRL secretion. Type IV cells (10%) did not show changes in PRL secretion and intracellular Ca(2+).  相似文献   

18.
19.
The correct spatial and temporal control of Ca2+ signaling is essential for such cellular activities as fertilization, secretion, motility, and cell division. There has been a long-standing interest in the role of caveolae in regulating intracellular Ca2+ concentration. In this review we provide an updated view of how caveolae may regulate both Ca2+ entry into cells and Ca2+-dependent signal transduction  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号