首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
We have utilized HPLC to develop optimal conditions for assaying the transformation of arachidonic acid in thrombin-treated human platelets. In the presence of increasing amounts of albumin, the total amount of radioactivity released from thrombin-treated platelets pre-labeled with 3H-arachidonic acid is first enhanced and then inhibited. Maximal release, reflecting primarily enhanced amounts of free labeled arachidonic acid, occurs at a final albumin concentration of 0.5 mg/ml. Calcium promoted the release of all radiolabeled metabolites, but it specifically enhanced HETE formation and release. Magnesium was without effect. Cyclo-oxygenase derived products constituted the bulk of released label at short time intervals, but after ten minutes exposure to thrombin in the presence of albumin (0.5 mg/ml) and 3 mM calcium, radioactivity in the released products was equally distributed among cyclo-oxygenase derived products (TXB2 + PGD2 + HHT), HETE and free arachidonic acid.  相似文献   

2.
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein.  相似文献   

3.
It has been postulated that the diacylglycerol lipase pathway is a predominant source of the free arachidonic acid which is released from phospholipids upon the exposure of human platelets to thrombin. The amount of released arachidonic acid and other fatty acids in thrombin-stimulated platelets was determined in the presence of BW755C, the cyclooxygenase/lipoxygenase inhibitor, and in relation to phosphatidylinositol degradation and phosphatidic acid formation. A stearic acid:arachidonic acid molar ratio approaching unity would be expected in the free fatty acid fraction if the latter pathway were a major source of released arachidonic acid. Our results indicate that the diacylglycerol lipase pathway contributes a maximum of 3-4 nmol of arachidonic acid/2 X 10(9) platelets or 12-15% of the total arachidonic acid released (25.8 nmol/2 X 10(9) platelets) upon exposure to thrombin (2 units/ml) for 4 min. Trifluoperazine inhibited most of the thrombin-dependent free arachidonic acid release but only 15% of the absolute loss of arachidonic acid from phosphatidylinositol. Therefore, we conclude that the diacylglycerol lipase pathway represents only a minor source of the free arachidonic acid that is released upon thrombin stimulation of human platelets.  相似文献   

4.
The formation of radiolabelled oxygenated products of arachidonic acid in thrombin-stimulated, [3H]arachidonic acid-prelabelled human platelets is inhibited in a concentration-dependent manner by BW 755C (3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline) or propyl gallate, both of which are combined inhibitors of lipoxygenase and cyclooxygenase. These compounds do not inhibit the thrombin-induced decrease in the radioactivity of platelet phospholipids but, instead, allow the accumulation of free radiolabelled arachidonic acid. Thrombin causes an increase in the levels of free, endogenous palmitic, stearic, oleic, linoleic and arachidonic acids of up to 10 nmol/10(9) platelets. In the presence of BW 755C or propyl gallate, further increases in the level of free arachidonic acid, of 20-50 nmol/10(9) platelets, occur. The enzyme inhibitors do not affect the accumulation of the other free fatty acids. The increase in arachidonic acid is optimal at 1 U/ml thrombin and 60% complete by 1 min at 37 degrees C. In the platelets from eight donors, the average increases in free fatty acids (in nmol/10(9) platelets) induced by 5 U/ml thrombin in 5 min at 37 degrees C in the presence of 100 microM BW 755C were 1 for linoleic acid, 3.6 for oleic acid, 4.5 for palmitic acid, 7.6 for stearic acid and 32.0 for arachidonic acid.  相似文献   

5.
a simple gas chromatographic method for the assay of phospholipase A2 (PLA2) has been described in which arachidonic acid released from endogenous phospholipid pools is measured following its extraction and derivatization to pentafluorobenzyl esters. Using this assay, PLA2 activities in control and calcium ionophore-stimulated human neutrophils, as well as in control, thrombin, and calcium ionophore stimulated human platelets, have been measured. These values are compared with those obtained by monitoring the release of radioactivity from [3H]- or [14C]arachidonic acid prelabeled cells. While the radiometric assay measures only the release of exogenously incorporated radioactive arachidonic acid, the gas chromatographic assay measures arachidonic acid released from all the endogenous pools. Thus, the apparent increase in PLA2 activity in stimulated cells measured by the gas chromatographic assay is four- to fivefold higher than that by the radiometric assay. Inclusion of fatty acid free bovine serum albumin in the reaction buffer significantly increases the amount of arachidonic acid that is measured by gas chromatography. The gas chromatographic method has also been successfully utilized for measuring PLA2 activity in cell-free preparations derived from physically disrupted human neutrophils.  相似文献   

6.
Thrombin-induced release of arachidonic acid from human platelet phosphatidylcholine is found to be more than 90% impaired by incubation of platelets with 1 mM dibutyryl cyclic adenosine monophosphate (Bt2 cyclic AMP) or with 0.6 mM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist. Incorporation of arachidonic acid into platelet phospholipids is not enhanced by Bt2 cyclic AMP. The addition of external Ca2+ to thrombin-treated platelets incubated with Bt2 cyclic AMP or TMB-8 does not counteract the observed inhibition. However, when divalent cation ionophore A23187 is employed as an activating agent, much less inhibition is produced by Bt2 cyclic AMP or TMB-8. The inhibition which does result can be overcome by added Ca2+. Inhibition of arachidonic acid liberation by Bt2 cyclic AMP, but not by TMB-8, can be overcome by high concentrations of A23187. When Mg2+ is substituted for Ca2+, ionophore-induced release of arachidonic acid from phosphatidylcholine of inhibitor-free controls is depressed and inhibition by Bt2 cyclic AMP is slightly enhanced. The phospholipase A2 activity of platelet lysates is increased by the presence of added Ca2+, however, the addition of either A23187 or Bt2 cyclic AMP is without effect on this activity. We suggest that Bt2 cyclic AMP may promote a compartmentalization of Ca2+, thereby inhibiting phospholipase A activity. The compartmentalization may be overcome by ionophore. By contrast, TMB-8 may immobilize platelet Ca2+ stores in situ or restrict access of Ca2+ to phospholipase A in a manner not susceptible to reversal by high concentrations of ionophore.  相似文献   

7.
The effects of Ca-antagonists on the thrombin-induced mobilization of radiolabeled arachidonate preincorporated into rat platelets as well as the subsequent formation of labeled cyclooxygenase and lipoxygenase products were analyzed in the presence of either Call or Ca2+-substitutes, Sr2+ and Ba2+. Results indicate that following thrombin stimulation (0.2 U/ml) in the presence of Ca2+, nitrendipine (Nit), Cd2+ or Mn2+ reduced the release of arachidonate and the biosynthesis of thromboxane 132- Inhibition of arachidonic acid release and metabolism were also obtained by both Nit and Cd2+ in the presence of Sr2+ and Bat+. Results from studies with a semi-purified phospholipase A2 fraction prepared from rat platelets indicated that the activity was almost unaffected by Nit or Cd2+. From these findings, we concluded that inhibition of platelet-induced release and metabolism of arachidonic acid by the Ca-antagonists tested require intact platelets. These data support the hypothesis of an interaction of these agents at an unknown surface membrane level.Abbreviations AA Arachidonic Acid - 5-HT 5-hydroxy-tryptamine - HETE 12-hydroxyeicosatetraenoic acid - HHT 12-hydroxy-heptadecanoic acid - HHT Nitrendipine - TXB2 Thromboxane B2  相似文献   

8.
Free fatty acid release from endothelial cells   总被引:1,自引:0,他引:1  
Cultured bovine aortic endothelial cells that have been previously enriched with fatty acid are able to release free fatty acid (FFA) into the extracellular fluid. No stimulus other than the presence of albumin in the medium is needed to elicit the FFA release. Intracellular triglycerides appear to be the source of most of the FFA that is released. The released FFA is composed of a mixture of fatty acids, with the fatty acid used to enrich the cells contributing about half of the total. Under certain conditions sufficient fatty acid can be released to increase the FFA concentration of the extracellular fluid. Cells enriched initially with arachidonic acid released 1.7- to 2.9-times more FFA as compared to cells enriched with corresponding amounts of oleic acid. Neither prostaglandins nor lipoxygenase products contributed appreciably to the amount of FFA released from cells enriched with arachidonic acid. Porcine pulmonary artery endothelial cells also can release net amounts of FFA. These findings indicate that endothelial cells have the capacity to release fatty acid in the form of FFA. This process could possibly play a role in the transfer of fatty acids, particularly arachidonic acid, across the endothelium.  相似文献   

9.
The endogenous release of prostaglandins and free fatty acids from the isolated perfused rabbit kidney in the absence or presence of stimulation by bradykinin or angiotensin-II was investigated. Basal (nonstimulated) release of prostaglandin-precursor arachidonic acid was 15-20-fold higher than that of prostaglandin E2 indicating a low conversion of released arachidonate to prostaglandins. Addition of bovine serum albumin to the perfusion medium caused a substantial (50-250%) increase in the release of all fatty acids except myristic and arachidonic acids, and no significant change in prostaglandin E2 generation. In contrast, administration of bradykinin (0.5 microgram) or angiotensin-II (1 microgram) caused a 10-15-fold increase in prostaglandin E2 release, and with albumin present, also a 2-3-fold selective increase in arachidonic acid release. Thus, unlike what was observed under basal conditions, arachidonic acid released following hormone stimulation is efficiently converted to prostaglandin E2. We conclude that administration of bradykinin or angiotensin-II into the perfused kidney activates a lipase which selectively releases arachidonic acid, probably from a unique lipid entity. This lipase reaction is tightly coupled to a prostaglandin generating system so that the released arachidonate is first made available to the prostaglandin cyclooxygenase, resulting in its substantial conversion to prostaglandins.  相似文献   

10.
The liberation of arachidonic acid (AA) was investigated in platelet membranes prelabelled with [3H]AA. In rat platelet membranes, Ca2+ at concentrations over several hundred nanomolar induced [3H]AA release, with a concurrent decrease in 3H radioactivity of phosphatidylethanolamine and phosphatidylcholine. Some 4-6% of total radioactivity incorporated into platelet membrane lipids was released at 1-10 microM-Ca2+, which is nearly equivalent to that attained in agonist-stimulated platelets. Formation of lysophospholipids in [3H]glycerol-labelled membranes and decrease in [3H]AA liberated by the phospholipase A2 inhibitors mepacrine and ONO-RS-082 suggest that [3H]AA release is mainly catalysed by phospholipase A2. In intact platelets agonist-stimulated [3H]AA release was markedly decreased in the absence of extracellular Ca2+ or in the presence of the intracellular Ca2+ chelator quin 2. These results indicate that in rat platelets the rise of intracellular Ca2+ plays a primary role in the activation of phospholipase A2. In contrast, Ca2+ even at high millimolar concentrations did not effectively stimulate [3H]AA release in human platelet membranes. Thus factor(s) additional to or independent of Ca2+ is required for the liberation of AA in human platelets.  相似文献   

11.
Human platelets contain an enzyme that catalyzes CoA-independent release of arachidonic acid from phosphatidylcholine with concomitant incorporation into plasmenylethanolamine. Addition of lysoplasmenylethanolamine (10-80 microM) to a crude membrane preparation of prelabeled platelets (0.24 mg of protein/ml) induces transfer of [3H]arachidonate from endogenous phosphatidylcholine to lysoplasmenylethanolamine (0.8 nmol of arachidonic acid/min/mg of protein). The transacylation reaction occurs in the absence of Ca2+, has a broad pH optimum from 7 to 8, is not affected by excess unlabeled arachidonic acid, and is inhibited by N-ethylmaleimide (0.2 mM) and Triton X-100 (0.1 mg/ml). The enzyme shows a high specificity toward the acyl donor (phosphatidylcholine), transfers fatty acids in the order: arachidonic greater than eicosatrienoic greater than oleic, and preferentially acylates lysoplasmenylethanolamine but also other lysophosphatides (lysophosphatidylethanolamine greater than lysophosphatidylserine greater than lysophosphatidylinositol = 0). Platelet acyltransferase, on the other hand, acylates ethanolamine lysophosphatides with free arachidonic acid in the order: lysophosphatidyl-ethanolamine greater than lysoplasmenylethanolamine. These results suggest that a distinct acylation mechanism exists for introduction of arachidonic acid into plasmalogen phosphatides. In stimulated platelets, the transacylase may play an additional role in the controlled release of esterified arachidonic acid for synthesis of the biologically active oxygenated metabolites.  相似文献   

12.
A basic phospholipase A was isolated from Vipera russellii snake venom. It induced a biphasic effect on washed rabbit platelets suspended in Tyrode's solution. The first phase was a reversible aggregation which was dependent on stirring and extracellular calcium. The second phase was an inhibitory effect on platelet aggregation, occurring 5 min after the addition of the venom phospholipase A without stirring or after a recovery from the reversible aggregation. The aggregating phase could be inhibited by indomethacin, tetracaine, papaverine, creatine phosphate/creatine phosphokinase, mepacrine, verapamil, sodium nitroprusside, prostaglandin E1 or bovine serum albumin. The venom phospholipase A released free fatty acids from synthetic phosphatidylcholine and intact platelets. p-Bromophenacyl bromide-modified venom phospholipase A lost its phospholipase A enzymatic and platelet-aggregating activities, but protected platelets from the aggregation induced by the native enzyme. The second phase of the venom phospholipase A action showed a different degree of inhibition on platelet aggregation induced by some activators in following order: arachidonic acid greater than collagen greater than thrombin greater than ionophore A23187. The longer the incubation time or the higher the concentration of the venom phospholipase A, the more pronounced was the inhibitory effect. The venom phospholipase A did not affect the thrombin-induced release reaction which was caused by intracellular Ca2+ mobilization in the presence of EDTA, but inhibited collagen-induced release reaction which was caused by Ca2+ influx from extracellular medium. The inhibitory effect of the venom phospholipase A and also lysophosphatidylcholine or arachidonic acid could be antagonized or reversed by bovine serum albumin. It was concluded that the first stimulatory phase of the venom phospholipase A action might be due to arachidonate liberation from platelet membrane. The second phase of inhibition of platelet aggregation and the release of ATP might be due to the inhibitory action of the split products produced by this venom phospholipase A.  相似文献   

13.
We have investigated the role of endothelial cells in the metabolism of 20-hydroxyeicosatetraenoic acid (20-HETE), a vasoactive mediator synthesized from arachidonic acid by cytochrome P450 omega-oxidases. Porcine coronary artery endothelial cells (PCEC) incorporated 20-[(3)H]HETE primarily into the sn-2 position of phospholipids through a coenzyme A-dependent process. The incorporation was reduced by equimolar amounts of arachidonic, eicosapentaenoic or 8,9-epoxyeicosatrienoic acids, but some uptake persisted even when a 10-fold excess of arachidonic acid was available. The retention of 20-[(3)H]HETE increased substantially when methyl arachidonoyl fluorophosphonate, but not bromoenol lactone, was added, suggesting that a Ca(2+)-dependent cytosolic phospholipase A(2) released the 20-HETE contained in PCEC phospholipids. Addition of calcium ionophore A23187 produced a rapid release of 20-[(3)H]HETE from the PCEC, a finding that also is consistent with a Ca(2+)-dependent mobilization process. PCEC also converted 20-[(3)H]HETE to 20-carboxy-arachidonic acid (20-COOH-AA) and 18-, 16-, and 14-carbon beta-oxidation products. 20-COOH-AA produced vasodilation in porcine coronary arterioles, but 20-HETE was inactive. These results suggest that the incorporation of 20-HETE and its subsequent conversion to 20-COOH-AA in the endothelium may be important in modulating coronary vascular function.  相似文献   

14.
Human platelets have been shown to contain a Ca++- and CoA-independent transacylase enzyme that catalyzes the transfer of arachidonic acid from phosphatidylcholine (PC) to lysoplasmenylethanolamine. It has been suggested that this route may represent a major source for released arachidonic acid in stimulated platelets. In this study, we have shown using arachidonic-labelled human platelets that the thrombin-induced activation of a transacylase reaction was not affected by concentrations of trifluoperazine (TFP) (15 micrograms/2 X 10(9) cells) which abolished the accumulation of free [3H]arachidonic acid in the presence of the cyclooxygenase/lipoxygenase inhibitor BW755C. TFP, at this concentration failed to block the hydrolysis of phosphatidylcholine (PC) completely and had no effect on the increased radioactivity seen in total phosphatidylethanolamine (PE) (160% of control after 4 min of incubation). These results suggest that the transacylase pathway activated in response to thrombin is not likely dependent on calcium. As TFP blocks effectively both the accumulation of free [3H]arachidonic acid and the mass of arachidonic acid without affecting the transfer of this fatty acid from PC to PE in thrombin-stimulated human platelets, it is very unlikely that the transacylation pathway represents a major source of release arachidonic acid. Based on these findings, we conclude that the above pathway may be primarily involved in the turnover of plasmenylethanolamine lipids in stimulated human platelets.  相似文献   

15.
Washed human platelets prelabeled with [14C]arachidonic acid and then exposed to the Ca2+ ionophore A23187 mobilized [14C]arachidonic acid from phospholipids and formed 14C-labeled thromboxane B2, 12-hydroxy-5-8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Addition of phorbol myristate acetate (PMA) by itself at concentrations from 10 to 1000 ng/ml did not release arachidonic acid or cause the formation of any of its metabolites, nor did it affect the metabolism of exogenously added arachidonic acid. When 1 microM A23187 was added to platelets pretreated with 100 ng of PMA/ml for 10 min, the release of arachidonic acid, and the amount of all arachidonic acid metabolites formed, were greatly increased (average 4.1 +/- 0.5-fold in eight experiments). This effect of PMA was mimicked by other stimulators of protein kinase C, such as phorbol dibutyrate and oleoyl acetoyl glycerol, but not by 4-alpha-phorbol 12,13-didecanoate, which does not stimulate protein kinase C. However, phosphorylation of the cytosolic 47-kDa protein, the major substrate for protein kinase C in platelets, was produced at lower concentrations of PMA and at a much higher rate than enhancement of arachidonic acid release by PMA, suggesting that 47-kDa protein phosphorylation is not directly involved in mobilization of the fatty acid. PMA also potentiated arachidonic acid release when stimulation of phospholipase C by the ionophore (which is due to thromboxane A2 and/or secreted ADP) was blocked by aspirin plus ADP scavengers, i.e. apyrase or creatine phosphate/creatine phosphokinase. Increased release of arachidonic acid was attributable to loss of [14C]arachidonic acid primarily from phosphatidylcholine (79%) with lesser amounts derived from phosphatidylinositol (12%) and phosphatidylethanolamine (8%). Phosphatidic acid, whose production is a sensitive indicator of phospholipase C activation, was not formed. Thus, the potentiation of arachidonic acid release by PMA appeared to be due to phospholipase A2 activity. These results suggest that diacylglycerol formed in response to stimulation of platelet receptors by agonists may cooperatively promote release of arachidonic acid via a Ca2+/phospholipase A2-dependent pathway.  相似文献   

16.
Activators of protein kinase C, such as tumor-promoting phorbol esters (e.g., phorbol myristate acetate), mezerein, (-)-indolactam V and 1-oleoyl 2-acetoyl glycerol, potentiate arachidonic acid release caused by elevation of intracellular Ca2+ with ionophores. This action of protein kinase C-activators required protein phosphorylation, and was attributed to enhanced hydrolysis of phospholipids by phospholipase A2 (Halenda, et al. (1989) Biochemistry 28, 7356-7363). Recently Fuse et al. ((1989) J. Biol. Chem 264, 3890-3895) reported that the apparent enhanced release of arachidonate was actually due to inhibition of the processes of re-uptake and re-esterification of released arachidonic acid. They attributed this to loss of arachidonyl-CoA synthetase and arachidonyl-CoA lysophosphatide acyltransferase activities, which were measured in membranes obtained from phorbol myristate acetate-treated platelets. In this paper, we show that phorbol myristate acetate, at concentrations that strongly potentiate arachidonic acid release, does not inhibit either arachidonic acid uptake into platelets or its incorporation into specific phospholipids. Furthermore, the fatty acid 8,11,14-eicosatrienoic acid, a competitive substrate for arachidonyl-CoA synthetase, totally blocks arachidonic acid uptake into platelets, but, unlike phorbol myristate acetate, does not potentiate arachidonic acid release by Ca2+ ionophores. We conclude that the action of phorbol myristate acetate is to promote the process of arachidonic acid release by phospholipase A2.  相似文献   

17.
To determine the origins of the arachidonic acid released post-mortem in brain tissue, [3H]arachidonic acid was injected by the intracerebro-ventricular route and radioactivity monitored in complex lipids and free arachidonic acid at various times after decapitation. The specific activity of the released arachidonic acid was close to that in the total phospholipid fraction and much lower than that of the neutral lipids. The phospholipid with the closest specific activity to the free arachidonic acid recovered at the end of the post-mortem period was phosphatidylinositol. Phosphatidylcholine showed a small but significant decrease in radioactivity post-mortem and could contribute 37% of the arachidonic acid released to the free fatty acid fraction. Arachidonic acid released in rat forebrain after decapitation thus comes from a mixture of phospholipids with phosphatidylinositol and phosphatidylcholine being the major source. Phosphatidylserine and phosphatidic acid did not make important contributions to the free arachidonic acid. In the microsomal fraction, the specific activity of the free arachidonic acid was very close to that in phosphatidylinositol.  相似文献   

18.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   

19.
The effect of ethanol on signal generation in collagen-stimulated human platelets was evaluated. Incubation of washed human platelets with physiologically relevant concentrations of ethanol (25-150 mM) resulted in a dose-dependent inhibition of aggregation and secretion in response to collagen (0.5-10 micrograms/ml), but did not inhibit shape change. In platelets labeled with [3H]arachidonic acid, ethanol significantly inhibited the release of arachidonic acid from phospholipids, in both the presence and the absence of indomethacin. Thromboxane B2 formation was also inhibited in proportion to the reduction in free arachidonic acid. There was a close correlation between the extent of inhibition of arachidonic acid release and secretion. The inhibition of platelet aggregation and secretion by ethanol was partially overcome by the addition of exogenous arachidonic acid. In the presence of indomethacin, ethanol had no effect on the activation of phospholipase C by collagen as determined by the formation of inositol phosphates and phosphatidic acid. Moreover, ethanol had no effect on the mobilization of intracellular calcium by collagen and only minimally inhibited the early phases of the phosphorylation of myosin light chain (20 kDa) and a 47-kDa protein, a known substrate for protein kinase C. Arachidonic acid formation was also inhibited by ethanol in response to ionomycin under conditions where phospholipase C activation was prevented. The results suggest that the functional effects of ethanol on collagen-stimulated platelets are due, at least in part, to an inhibition of phospholipase A2.  相似文献   

20.
Arachidonic acid (AA) incorporation into phospholipids and cyclooxygenase and lipoxygenase mediated metabolism of arachidonic acid were studied in homogenized and intact Neuro-2A cells. When 3H8-AA was added to homogenized cells and incubated 20 minutes, 39% of the label was converted to prostaglandins (PGs), 10% to hydroxy-eicosatetraenoic acid (HETE) and 26% was incorporated into phospholipids. PGE2 and PGF2a were the major PGs produced. Synthesis of PGs was blocked by 10 microM indomethacin and synthesis of PGs and HETE was blocked by 10 microM eicosatetraynoic acid (ETYA). The cell homogenate produced the 13,14-dihydro-15-keto metabolites of PGE2 and PGF2a from 3H8-AA and also converted exogenous 3H7-PGE2 and 3H8-PGF2a to metabolites. When intact cells were labeled for 24 hours with 14C1-AA and the cells and media then analyzed, 75% of the radioactivity was incorporated into cellular phospholipids, 0.8% was converted to PGs and metabolites and 0.7% converted to HETE. Cells prelabeled for 24 hours were washed and incubated for 30 minutes in fatty acid free media. There was a 23% release of AA from phospholipids. One-fifth of the released AA was converted to HETE. PG synthesis in the intact resting cells was low. In summary, the Neuro-2A cell provides a good model system for studying arachidonic acid metabolism and incorporation into phospholipids in cells of neuronal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号