首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The lectin family is composed of mono- and oligosaccharide binding proteins that could activate specific cellular activities, such as cell-cell attachment and toxin production. In the present study, the effect of the external addition of lectins to culture media containing the freshwater cyanobacterium Microcystis aeruginosa on its metabolic activities, such as iron uptake and toxin production was investigated. Among the three lectins examined in this study (concanavalin A [Con A], wheat germ agglutinin [WGA] and peanut agglutinin [PNA]), PNA substantially increased the accumulated intracellular and extracellular iron content. The binding of PNA and Con A to M. aeruginosa cells was visualized via fluorescence microscopy using a lectin adjunct with fluorescein isothiocyanate, and resulted in carbohydrate and protein accumulation in the cellular capsule. Given that the highest carbohydrate accumulation was seen in the Con A system (where iron accumulation was relatively lower), carbohydrate quality is likely important factor that influences cellular iron accumulation. Since PNA specifically binds to sugars such as galactose and N-acetylgalactosamine, these saccharide species could be important candidates for intracellular and extracellular iron accumulation and transport. Microcystin biosynthesis was stimulated in the presence of PNA and WGA, whereas cellular iron uptake increased only in the presence of PNA. Thus, the iron uptake was not necessarily congruent with the upregulation of microcystin synthesis, which suggested that the positive effect of lectin on iron uptake is probably attributable to the PNA-assisted iron accumulation around the cell surface. Overall, the present study provides insights into the interactions of lectin that influence cellular metabolic activities such as iron uptake, extracellular polymeric substance accumulation, and toxin production.  相似文献   

3.
 Despite their wide distribution in various organisms, no physiological roles have been proposed for the human blood-group-ABO (ABH)-active trisaccharides. Here we show that monoclonal antibodies against human blood-group-B-active trisaccharides (B-substance) completely block the Ca2+-dependent cell-cell adhesion system of frog (Xenopus laevis) embryonic cells. Synthetic B-substance or B-active glycopeptides also disrupt the Ca2+ -dependent cell-cell adhesion. These results suggest that blood-group-B-active substances play a role in cell-cell adhesion. Blood-group-B-active substances were found as glycoproteins and as glycosphingolipids. In order to identify B-active glycoproteins active in cell-cell adhesion, we purified B-active membrane glycoproteins by two-dimensional electrophoresis and found that they are 45- to 58-kDa proteins with pI(s) ranging from 4.0 to 5.3. They are glycosylphosphatidyl inositol (GPI) anchored. Amino acid sequence analysis showed that the purified B-active GPI-anchored proteins are homologues of soluble Xenopus cortical granule lectins (CGL). The results suggest that the B-active membrane glycoproteins are GPI-anchored forms of the lectin and are directly involved in frog Ca 2+-dependent cell-cell adhesion. Received: 16 September 1997 / Accepted 19 November 1997  相似文献   

4.
Complex carbohydrates and sugar receptors at the surface of eukaryotic cells are involved in recognition phenomena. Membrane lectins have been characterized, using biochemical, biological and cytological methods. Their biological activities have been assessed using labeled glycoproteins or neoglycoproteins. Specific glycoproteins or neoglycoproteins have been used to inhibit their binding capacity in both in vitro and in vivo experiments. In adults, lymphoid and myeloid cells as well as tumor cells grow in a given organ and eventually migrate and home in another organ; these phenomena are known as the homing process or metastasis, respectively. In specific cases, membrane lectins of endothelial cells recognize cell surface glycoconjugates of lymphocytes or tumor cells, while membrane lectins of lymphocytes and of tumor cells recognize glycoconjugates of extracellular matrices or of non-migrating cells. Therefore, membrane lectins are involved in cell-cell recognition phenomena. Membrane lectins are also involved in endocytosis and intracellular traffic of glycoconjugates. This property has been demonstrated not only in hepatocytes, fibroblasts, macrophages and histiocytes but also in tumor cells, monocytes, thyrocytes, etc. Upon endocytosis, membrane lectins are present in endosomes, whose luminal pH rapidly decreases. In cells such as tumor cells or macrophages, endosomes fuse with lysosomes; it is therefore possible to target cytotoxic drugs or activators, by binding them to specific glycoconjugates or neoglycoproteins through a linkage specifically hydrolyzed by lysosomal enzymes. In cells such as monocytes, the delivery of glycoconjugates to lysosomes is not active; in this case, it would be preferable to use an acid-labile linkage. Cell surface membrane lectins are developmentally regulated; they are present at given stages of differentiation and of malignant transformation. Cell surface membrane lectins usually bind glycoconjugates at neutral pH but not in acidic medium: their ligand is released in acidic specialized organelles; the internalized ligand may be then delivered into lysosomes, while the membrane lectin is recycled. Some membrane lectins, however, do bind their ligand in relatively acidic medium as in the case of thyrocytes. The presence of cell surface membrane lectins which recognize specific sugar moieties opens the way to interesting applications: for instance, isolation of cell subpopulations such as human suppressor T cells, targeting of anti-tumor or anti-viral drugs, targeting of immunomodulators or biological response modifiers.  相似文献   

5.
Endogenous lectins as mediators of tumor cell adhesion   总被引:1,自引:0,他引:1  
Endogenous carbohydrate-binding proteins have been found in various normal tissues and cells. Although lectins with different sugar-binding specificities have been described, the most prevalent ones are those that bind beta-galactosides. The ability of some normal and malignant cells to bind exogenous carbohydrate-containing ligands suggested that lectinlike activity is associated with the cell surface and that carbohydrate-binding proteins might mediate intercellular recognition and adhesion. We found that extracts of various cultured murine and human tumor cells exhibit a galactoside-inhibitable hemagglutinating activity. This activity was associated with two proteins of molecular weights of 34,000 and 14,500 daltons, which were purified by affinity chromatography by using immobilized asialofetuin. That these lectins are present on the cell surface was indicated by the binding of monoclonal antilectin antibodies to the surface of various tumor cells and by the immunoprecipitation of 125I-labeled lectins from solubilized cell-surface iodinated cells by polyclonal antilectin antibodies. That these cell surface lectins are functional was demonstrated by the ability of the galactose-terminating asialofetuin to enhance cell aggregation and of asialofetuin glycopeptides to block this homotypic aggregation as well as to suppress cell attachment to substratum, and by the inhibition of both asialofetuin-induced cell aggregation and cell attachment to substratum by the binding of monoclonal antilectin antibodies to the cell surface. These findings implicate cell surface lectins as mediators of cell-cell and cell-substratum adhesion. Some of these cellular interactions might be important determinants of tumor cell growth and metastasis.  相似文献   

6.
The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath‐like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero‐aggregative Escherichia coli Sci‐1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self‐protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C‐terminal extension domain of VgrG1, including a transthyretin‐like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C‐terminus of VgrG proteins.  相似文献   

7.
Many studies have implicated cell-surface lectins in heterologous cell-cell adhesion, but little is known about the participation of lectins in cellular adhesion in homologous cells. Here, we show the development of a cell model for investigating the direct role of a cell-surface lectin in homologous cell-cell adhesion. Parenchymal cells were isolated from caprine liver using a perfusion buffer, and dispersed in a chemically defined modified Ringer’s solution. These cells undergo autoagglutination in the presence of Ca2+. The autoagglutinated cells can be dissociated specifically with D-galactose (50 mM), which also inhibits the liver cell autoagglutination event. The blood serum protein fetuin has no effect on liver cell autoagglutination, whereas desialylated fetuin (100 μM), with its terminal D-galactose residue, showed a high affinity for blocking the autoagglutination event. The data demonstrates the occurrence of a Ca2+-dependent D-galactose-specific lectin and a lectin receptor on the parenchymal cells. Furthermore, it shows that the observed autoagglutination event is caused by the interaction of the cell-surface lectin with its receptor on the neighbouring homologous cells. The data supports the view that homologous cell-cell contact in mammalian tissues is triggered by such lectin-receptor interaction and that the previously reported cell-surface adhesive proteins serve as a secondary force to strengthen cell adhesion. This cell model could be extremely useful for investigating the direct role of cell-surface lectin and its receptor in homologous cell adhesion in a variety of tissues under normal and pathological conditions.  相似文献   

8.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

9.
安影  董涛 《微生物学报》2023,63(9):3428-3440
蛋白分泌作为细胞之间传递信号的途径之一,在微生物生存竞争中也扮演着重要的角色。革兰氏阴性菌可以通过Ⅵ型分泌系统(type Ⅵ secretion system, T6SS)将效应蛋白传递至胞外或原核和真核微生物中,从而介导微生物间的竞争或宿主-细菌的相互作用,最终建立竞争优势。本文主要总结了T6SS的结构与组成,并重点对效应蛋白的装配以及其与免疫蛋白的作用机制的研究进展进行阐述,为以后靶向T6SS抗菌药物的研制提供新思路。  相似文献   

10.
Lactoside-binding lectins (galectins) with molecular weights of about 14.5 kDa (galectin-1) and 29–35 kDa (galectin-3) bind preferentially to polylactosaminoglycan-containing glycoconjugates and have been found on the surface of tumour cells and implicated in cell-cell and cell-extracellular matrix adhesion and metastasis. We have demonstrated by immunoblotting that both galectin-1 and galectin-3 are present in extracts of endothelial cells cultured from bovine aorta, rat lung, mouse lung and mouse brain microvessels, whereas mouse hepatic sinusoidal endothelial cells expressed primarily galectin-1. These galectins were also localized by indirect immunofluorescent labelling on the surface of the different endothelial cells in culture and by immunohistochemical staining in human tissuesin vivo. Anti-galectin-1 antibodies inhibited the adhesion of liver-preferring murine RAW117-H10 large-cell lymphoma cells to hepatic sinusoidal endothelial cells or lung microvessel endothelial cellsin vitro. The data indicate that galectin-1 is expressed on the extracellular surface of endothelial cells and can mediate in part the adhesion of RAW117-H10 cells to liver microvessel endothelial cells.  相似文献   

11.
The autophosphorylating protein, Ptk, of the bacterium Acinetobacter johnsonii was overproduced, purified to homogeneity and assayed for ATP binding by using the nucleotide analog 5'-p-fluorosulfonylbenzoyl adenosine. The ATP binding site of this bacterial autophosphorylating protein was found to be different from that generally used by eukaryotic protein kinases. It consists of two amino acid sequences that closely resemble the Walker motifs A and B. This observation was confirmed by site-directed mutagenesis experiments which showed, in addition, that the ATP molecule bound to these motifs is effectively employed by the bacterial protein to autophosphorylate on tyrosine. It is concluded that even though the overall autophosphorylation reaction is similar in eukaryotic and prokaryotic proteins, the mechanism involved is likely different.  相似文献   

12.
The Escherichia coli toxin exporter HlyB comprises an integral membrane domain fused to a cytoplasmic domain of the ATP-binding casette (ABC) super-family, and it directs translocation of the 110kDa haemolysin protein out of the bacterial cell without using an N-terminal secretion signal peptide. We have exploited the ability to purify the soluble HlyB ABC domain as a fusion with glutathione S-transferase to obtain a direct correlation of the in vivo export of protein by HlyB with the degree of ATP binding and hydrolysis measured in vitro. Mutations in residues that are invariant or highly conserved in the ATP-binding fold and glycine-rich linker peptide of prokaryotic and eukaryotic ABC transporters caused a complete less of both HlyB exporter function and ATPase activity in proteins still able to bind ATP effectively and undergo ATP-induced conformational change. Mutation of less-conserved residues caused reduced export and ATP hydrolysis, but not ATP binding, whereas substitutions of poorly conserved residues did not impair activity either in vivo or in vitro. The data show that protein export by HlyB has an absolute requirement for the hydrolysis of ATP bound by its cytoplasmic domain and indicate that comparable mutations that disable other prokaryotic and eukaryotic ABC transporters also cause a specific loss of enzymatic activity.  相似文献   

13.
Echinoid is an immunoglobulin domain-containing transmembrane protein that modulates cell-cell signaling by Notch and the EGF receptors. We show that, in the Drosophila wing disc epithelium, Echinoid is a component of adherens junctions that cooperates with DE-Cadherin in cell adhesion. Echinoid and beta-catenin (a DE-Cadherin interacting protein) each possess a C-terminal PDZ domain binding motif that binds to Bazooka/PAR-3; these motifs redundantly position Bazooka to adherens junctions. Echinoid also links to actin filaments by binding to Canoe/AF-6/afadin. Moreover, interfaces between Echinoid- and Echinoid+ cells, like those between DE-Cadherin- and DE-Cadherin+ cells, are deficient in adherens junctions and form actin cables. These characteristics probably facilitate the strong sorting behavior of cells that lack either of these cell-adhesion molecules. Finally, cells lacking either Echinoid or DE-Cadherin accumulate a high density of the reciprocal protein, further suggesting that Echinoid and DE-Cadherin play similar and complementary roles in cell adhesion.  相似文献   

14.
Colonisation of the body surface of healthy subjects by Staphylococcus aureus is mostly harmless because the immune system limits bacterial growth. Under as yet unknown circumstances, however, previously commensal bacteria may become pathogenic by rapid proliferation and density‐dependent generation of virulence factors that negatively affect the surrounding eukaryotic host cells. One of the most problematic virulence factors of Staphylococcus aureus is alpha‐toxin (hemolysin A, Hla). This toxin forms transmembrane pores in the plasma membranes of eukaryotic host cells. The inner diameter of the pore allows ions and small organic molecules to pass from the extracellular space to the cytosol or vice versa. The resulting dissipation of ion gradients as well as loss of energy‐rich molecules like ATP from the cells heavily disturbs host cell functions and signal transduction processes. In epithelial cells, these changes severely affect the polarized phenotype of the epithelial cells by restructuring of the actin cytoskeleton, inducing changes in cell shape and loosening cell‐cell adhesion which ultimately compromises the barrier function of the cell sheet. These effects of alpha‐toxin may provide an explanation why it is particularly Staphylococcus aureus that is involved in the onset of many cases of lung infections (pneumonia).  相似文献   

15.

Background

Prokaryotic lectins offer significant advantages over eukaryotic lectins for the development of enhanced glycoselective tools. Amenability to recombinant expression in Escherichia coli simplifies their production and presents opportunities for further genetic manipulation to create novel recombinant prokaryotic lectins (RPLs) with altered or enhanced carbohydrate binding properties. This study explored the potential of the α-galactophilic PA-IL lectin from Pseudomonas aeruginosa for use as a scaffold structure for the generation of novel RPLs.

Method

Specific amino acid residues in the carbohydrate binding site of a recombinant PA-IL protein were randomly substituted by site-directed mutagenesis. The resulting expression clones were then functionally screened to identify clones expressing rPA-IL proteins with altered carbohydrate binding properties.

Results

This study generated RPLs exhibiting diverse carbohydrate binding activities including specificity and high affinity for β-linked galactose and N-acetyl-lactosamine (LacNAc) displayed by N-linked glycans on glycoprotein targets. Key amino acid substitutions were identified and linked with specific carbohydrate binding activities. Ultimately, the utility of these novel RPLs for glycoprotein analysis and for selective fractionation and isolation of glycoproteins and their glycoforms was demonstrated.

Conclusions

The carbohydrate binding properties of the PA-IL protein can be significantly altered using site-directed mutagenesis strategies to generate novel RPLs with diverse carbohydrate binding properties.

General significance

The novel RPLs reported would find a broad range of applications in glycobiology, diagnostics and in the analysis of biotherapeutics. The ability to readily produce these RPLs in gram quantities could enable them to find larger scale applications for glycoprotein or biotherapeutic purification.  相似文献   

16.
Ribosome inactivating proteins (RIPs) like ricin, pokeweed antiviral protein (PAP) and Shiga‐like toxins 1 and 2 (Stx1 and Stx2) share the same substrate, the α‐sarcin/ricin loop, but differ in their specificities towards prokaryotic and eukaryotic ribosomes. Ricin depurinates the eukaryotic ribosomes more efficiently than the prokaryotic ribosomes, while PAP can depurinate both types of ribosomes. Accumulating evidence suggests that different docking sites on the ribosome might be used by different RIPs, providing a basis for understanding the mechanism underlying their kingdom specificity. Our previous results demonstrated that PAP binds to the ribosomal protein L3 to depurinate the α‐sarcin/ricin loop and binding of PAP to L3 was critical for its cytotoxicity. Here, we used surface plasmon resonance to demonstrate that ricin toxin A chain (RTA) binds to the P1 and P2 proteins of the ribosomal stalk in Saccharomyces cerevisiae. Ribosomes from the P protein mutants were depurinated less than the wild‐type ribosomes when treated with RTA in vitro. Ribosome depurination was reduced when RTA was expressed in the ΔP1 and ΔP2 mutants in vivo and these mutants were more resistant to the cytotoxicity of RTA than the wild‐type cells. We further show that while RTA, Stx1 and Stx2 have similar requirements for ribosome depurination, PAP has different requirements, providing evidence that the interaction of RIPs with different ribosomal proteins is responsible for their ribosome specificity.  相似文献   

17.
Sulfoglucuronyl carbohydrate linked to neolactotetraose reacts with HNK-1 antibody. The HNK-1 carbohydrate epitope is found in two major glycolipids, several glycoproteins and in some proteoglycans of the nervous system. Most of the HNK-1 reactive glycoproteins so far identified are neural cell adhesion molecules and/or are involved in cell-cell interactions. HNK-1 carbohydrate is highly immunogenic. Several HNK-1-like antibodies, including IgM of some patients with plasma cell abnormalities and having peripheral neuropathy, have been described. This article summarizes published work mainly on sulfoglucuronyl glycolipids, SGGLs and covers: structural requirements of the carbohydrate epitope for binding to HNK-1 and human antibodies, expression of the lipids in various neural areas, stage and region specific developmental expression in CNS and PNS, immunocytochemical localization, loss of expression in Purkinje cell abnormality murine mutations, biosynthetic regulation of expression by a single enzyme N-acetylglucosaminyl transferase, identification of receptor-like carbohydrate binding neural proteins (lectins), and perceived role of the carbohydrate in physiological functions. The latter includes role in: pathogenesis of certain peripheral neuropathies, in migration of neural crest cells, as a ligand in cell-cell adhesion/interaction and as a promoter of neurite outgrowth for motor neurons. Multiple expression of HNK-1 carbohydrate in several molecules and in various neural cell types at specific stages of nervous system development has puzzled investigators as to its specific biological function, but this may also suggest its importance in multiple systems during cell differentiation and migration processes.Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

18.
We have developed an on-chip single-cell based microcultivation method for analyzing the variability of genetic information stored in single cells and their epigenetic correlations. The method uses four systems: an on-chip cell sorter for purifying the cells in a non-destructive manner; an on-chip single-cell cultivation chip for isolating single cells; an on-chip agarose microchamber system for constructive cell-cell network formation during cultivation; and an on-chip single-cell-based expression analysis system. Using these systems, we could measure the variability of prokaryotic cells and eukaryotic cells having the same DNA and found that, although prokaryotic cells have a large variability in their interdivision times, sister eukaryotic cells having the same DNA synchronized well. We also measured the dynamics of synchronization of beating cardiac myocytes and found that two isolated cells synchronize by one cell following the other after a short pause in beating. These results showed the potential of the on-chip microcultivation method's constructive approach to analyzing cell systems.  相似文献   

19.
Attachment of microorganisms to host cells is believed to be a critical early step in microbial pathogenesis. The aim of the study was to determine the role of the known glycosaminoglycan (GAG) binding activity of Staphylococcus aureus and coagulase-negative staphylococci (CoNS) in their attachment to six different eukaryotic cell lines. Three staphylococcal species expressing GAG binding capacity—S. aureus, S. epidermidis, and S. hemolyticus—were chosen for investigation. Six different eukaryotic cell lines, endothelial HUVEC and EA. hy 926 cells, epithelial A549 and HeLa S3 cells, fibroblasts HEL Sp 12 and macrophages J774.A1, were included. A modified ELISA with biotinylated bacteria was used for estimating the adhesion of staphylococci to each of the cell lines. Our results showed that staphylococci adhered to each of the cell lines studied, although the binding of CoNS strains to epithelial cells was lower than to the other cells. The attachment to all cell types could be partially decreased by pretreatment of the bacteria with various polysulfated agents (highest inhibition was 60%), as well as by chlorate and heparitinase treatment of the cells. These observations may suggest that at least one mode of staphylococcal attachment utilizes GAG chains present on the surface of virtually all adherent cells. Received: 6 September 2000 / Accepted: 29 December 2000  相似文献   

20.
Previous studies have demonstrated that CD44 isoforms containing the alternatively spliced exon v10 promote cell-cell adhesion via a mechanism that involves the recognition of chondroitin sulfate side chains presented on the surface of interacting cells in association with other CD44 molecules. Sequence analysis revealed the presence within exon v10 of two motifs that may be relevant to this interaction, a B[X(7)]B motif that may contribute to the recognition and binding of chondroitin sulfate and a serine-glycine motif that may serve as a site of chondroitin sulfate attachment. To determine whether either of these two motifs explain the unique adhesive activity of exon v10-containing CD44 isoforms, each was targeted by site-directed mutagenesis, and the adhesive activity of the resultant mutants was determined using a quantitative cell-cell binding assay. The data obtained demonstrate conclusively that it is the exon v10-encoded B[X(7)]B motif that is solely responsible for the enhanced adhesive activity of exon v10-containing CD44 isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号