共查询到20条相似文献,搜索用时 0 毫秒
1.
Janez Sketelj Neva Črne-Finderle Samo Ribarič Miro Brzin 《Cellular and molecular neurobiology》1991,11(1):35-54
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns. 相似文献
2.
3.
Diego Zelada Francisca Bermedo-García Nicolás Collao Juan P. Henríquez 《Biological reviews of the Cambridge Philosophical Society》2021,96(2):752-766
The coordinated movement of many organisms relies on efficient nerve–muscle communication at the neuromuscular junction (NMJ), a peripheral synapse composed of a presynaptic motor axon terminal, a postsynaptic muscle specialization, and non-myelinating terminal Schwann cells. NMJ dysfunctions are caused by traumatic spinal cord or peripheral nerve injuries as well as by severe motor pathologies. Compared to the central nervous system, the peripheral nervous system displays remarkable regenerating abilities; however, this capacity is limited by the denervation time frame and depends on the establishment of permissive regenerative niches. At the injury site, detailed information is available regarding the cells, molecules, and mechanisms involved in nerve regeneration and repair. However, a regenerative niche at the final functional step of peripheral motor innervation, i.e. at the mature neuromuscular synapse, has not been deciphered. In this review, we integrate classic and recent evidence describing the cells and molecules that could orchestrate a dynamic ecosystem to accomplish successful NMJ regeneration. We propose that such a regenerative niche must ensure at least two fundamental steps for successful NMJ regeneration: the proper arrival of incoming regenerating axons to denervated postsynaptic muscle domains, and the resilience of those postsynaptic domains, in morphological and functional terms. We here describe and combine the main cellular and molecular responses involved in each of these steps as potential targets to help successful NMJ regeneration. 相似文献
4.
Testosterone control of endplate and non-endplate acetylcholinesterase in the rat levator ani muscle
The time course of effects of castration (5–60 days) and testosterone treatment (15–60 days) of adult male rats were examined on the endplate (+EP) and non-endplate (–EP) acetylcholinesterase (AChE) of the androgen-dependent levator ani (LA) muscle. The thiocholine method was used to determine the enzyme activity. Castration caused LA muscle atrophy within 5 days but reduced the –EP and +EP AChE after 10 and 20 days, respectively. Following 30 days castration –EP and +EP AChE reached respectively 41% and 35% of control activity. Testosterone retrieval restored the control values of both muscle weight and total AChE after 15 and 60 days, respectively. Recovery of the +EP AChE preceded that of –EP AChE by 30 days. The results showed that in the rat LA muscle, +EP and –EP AChE depend on a continuous testosterone regulation that predominates at +EP region spreading thereafter to –EP region. Those data suggest a hormone regulation of AChE exerted indirectly through the synthesis and release of neurotrophic substances. 相似文献
5.
6.
Skeletal muscle tissue is made up of highly organized multinuclear cells. The internal organization of the muscle cell is dictated by the necessary regular arrangement of repeated units within the protein myofibrils that mediate muscle contraction. Skeletal muscle cells have the usual membrane traffic pathways for partitioning newly synthesized proteins, internalizing cell surface receptors for hormones and nutrients, and mediating membrane repair. However, in muscle, these pathways must be further specialized to deal with targeting to and organizing muscle-specific membrane structures, satisfying the unique metabolic requirements of muscle and meeting the high demand for membrane repair in a tissue that is constantly under mechanical stress. Specialized membrane traffic pathways in muscle also play a role in the formation of muscle through fusion of myoblast membranes and the development of internal muscle-specific membrane structures during myogenesis and regeneration. It has recently become apparent that muscle-specific isoforms of proteins that are known to mediate ubiquitous membrane traffic pathways, as well as novel muscle-specific proteins, are involved in tissue-specific aspects of muscle membrane traffic. Here we describe the specialized membrane structures of skeletal muscle, how these are developed, maintained and repaired by specialized and generic membrane traffic pathways, and how defects in these pathways result in muscle disease. 相似文献
7.
Young male rats were castrated at 7 days of age, and treated with testosterone propionate daily from 7 to 34 days of age. At 13 months of age, motor axons and terminals innervating the levator ani (LA) muscle were stained with tetranitroblue tetrazolium (TNBT). The number of separate axons innervating individual muscle fibers was counted, and muscle fiber diameter was measured. Previous studies have shown that this androgen treatment increases muscle fiber diameter and delays synapse elimination, measured as (1) a greater percentage of muscle fibers innervated by multiple axons and (2) larger motor units. The present results indicate that the androgenic effect on synapse elimination is permanent, in that high levels of multiple innervation persisted for 12 months after the end of androgen treatment. In contrast, the effect on muscle fiber diameter was not maintained for this period. This dissociation of androgenic effects on the pattern of innervation from androgenic effects on muscle fiber diameter offers further evidence that the androgenic maintenance of multiple innervation is not dependent on muscle fiber size. In addition, circulating testosterone levels were measured at 50 and 60 days of age in animals similarly treated with androgen or oil from 7 to 34 days of age. By 60 days of age, testosterone levels in hormone-treated animals had dropped below detectability, comparable to levels in oil-treated controls. This provides additional evidence that androgen treatment during juvenile development can have permanent effects on the adult pattern of innervation in the LA muscle. 相似文献
8.
9.
Muscle depends upon innervation and contraction to maintain a differentiated state. Denervation can therefore induce muscle atrophy. In grasshoppers, muscle degeneration can also be triggered by the severing of a leg during autotomy. In this case, the muscles that degenerate are neither damaged nor denervated. This phenomenon suggests the existence of transneuronal mechanisms that influence muscle survival. To characterize this autotomy-induced process, we studied the degeneration of a thoracic tergotrochanteral depressor muscle (M#133b,c) subsequent to the shedding of a hindlimb in the grasshoppers Barytettix psolus and Barytettix humphreysii. Both histochemical and electrophysiological methods were used to follow muscle degeneration 1, 3, 5, 10, and 15 days postautotomy. Muscle fibers began to show denervation-like electrophysiological changes (i.e., depolarized resting membrane potentials and postinhibitory rebound) as soon as 3 days postautotomy. By 10 days, significant muscle degeneration was evident and electrophysiological changes were found in all animals tested. Muscle anatomical degeneration was not induced by synaptic transmission failure, because neuromuscular transmission was maintained in most fibers. The rate of muscle degeneration was not constant. Between 1 and 10 days, mean fiber cross-sectional area did not change on the autotomized side, although this is normally a time of muscle growth. However after 10 days, cross-sectional area became drastically reduced and the number of muscle fibers within M#133b,c was decreased. The variability in rate of fiber degeneration was not dependent upon fiber type, since M#133b,c only contains fast-type fibers. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 497–508, 1998 相似文献
10.
11.
As the mammalian neuromuscular junction matures, its acetylcholine receptor (AChR)-rich postsynaptic apparatus is transformed from an oval plaque into a pretzel-shaped array of branches that precisely mirrors the branching pattern of the motor nerve terminal. Although the nerve has been believed to direct postsynaptic maturation, we report here that myotubes cultured aneurally on matrix-coated substrates form elaborately branched AChR-rich domains remarkably similar to those seen in vivo. These domains share several characteristics with the mature postsynaptic apparatus, including colocalization of multiple postsynaptic markers, clustering of subjacent myonuclei, and dependence on the muscle-specific kinase and rapsyn for their formation. Time-lapse imaging showed that branched structures arise from plaques by formation and fusion of AChR-poor perforations through a series of steps mirroring that seen in vivo. Multiple fluorophore imaging showed that growth occurs by circumferential, asymmetric addition of AChRs. Analysis in vivo revealed similar patterns of AChR addition during normal development. These results reveal the sequence of steps by which a topologically complex domain forms on a cell and suggest an unexpected nerve-independent role for the postsynaptic cell in generating this topological complexity. 相似文献
12.
At the developing neuromuscular junction the Agrin receptor MuSK is the central organizer of subsynaptic differentiation induced by Agrin from the nerve. The expression of musk itself is also regulated by the nerve, but the mechanisms involved are not known. Here, we analyzed the activation of a musk promoter reporter construct in muscle fibers in vivo and in cultured myotubes, using transfection of multiple combinations of expression vectors for potential signaling components. We show that neuronal Agrin by activating MuSK regulates the expression of musk via two pathways: the Agrin-induced assembly of muscle-derived neuregulin (NRG)-1/ErbB, the pathway thought to regulate acetylcholine receptor (AChR) expression at the synapse, and via a direct shunt involving Agrin-induced activation of Rac. Both pathways converge onto the same regulatory element in the musk promoter that is also thought to confer synapse-specific expression to AChR subunit genes. In this way, a positive feedback signaling loop is established that maintains musk expression at the synapse when impulse transmission becomes functional. The same pathways are used to regulate synaptic expression of AChR epsilon. We propose that the novel pathway stabilizes the synapse early in development, whereas the NRG/ErbB pathway supports maintenance of the mature synapse. 相似文献
13.
The objective of the present investigation was to determine the effects of muscle unloading—a form of subtotal disuse— on the morphology of the neuromuscular junction (NMJ) in younger and aged animals. Sixteen aged (22 months) and 16 young adult (8 months) male Fischer 344 rats were assigned to control and hindlimb suspension (HS) conditions (n = 8/group). At the conclusion of the 4 week experimental period, soleus muscles were collected, and immunofluorescent procedures were used to visualize acetylcholine (ACh) vesicles and receptors, nerve terminal branching, as well as NCAM and NT‐4 expression. Quantitative analyses revealed that aged controls displayed significant (p < 0.05) reductions in area and perimeter length of ACh vesicle and receptor regions, without affecting nerve terminal branch number or length. In contrast to younger NMJs, which were resilient to the effects of unloading, NMJs of aged HS rats demonstrated significant expansion of ACh vesicle and receptor dimensions compared to aged controls. Qualitative analyses of NCAM staining indicated that aging alone somewhat increased this molecule's expression (aged controls > young controls). Among the four groups, however, the greatest amount of NCAM content was detected among aged HS muscles, matching the degree of synaptic plasticity exhibited in those muscles. Unlike NCAM, the expression of NT‐4 did not appear to differ among the treatment groups. These data suggest that although young adult muscle maintains normal NMJ structure during prolonged exposure to unloading, aged NMJs experience significant adaptation to that stimulus. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 246–256, 2003 相似文献
14.
Diane M. Jaworski Paul Soloway John Caterina William A. Falls 《Developmental neurobiology》2006,66(1):82-94
The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre‐ or postsynaptic compartments. Here, we demonstrate that TIMP‐2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP‐2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP‐2?/? mice fall off the RotaRod significantly faster than wild‐type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP‐2?/? mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP‐2?/? mice. Juvenile TIMP‐2?/? mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP‐2?/? endplates are enlarged and more complex. This suggests a role for TIMP‐2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP‐2?/? motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP‐2?/? motor phenotype. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006 相似文献
15.
豚鼠眶外肌中有两类不同电活动模式的肌纤维。一类纤维有动作电位,小终板电位时程较短并且较一致;另一类纤维不能产生动作电位,小终板电位时程较长而且多变。用电泳注射普胺天蓝分别标记这两类纤维各6条,并结合胆碱酯酶染色,结果表明,前一类肌纤维都是只有一个神经肌肉接头的快纤维;而另一类肌纤维都是有多个接头的慢纤维。根据双微电极电庄箱位实验结果,计算了上述决、慢肌纤维小终板电流下降相时间常数τ及其电压系数A。实验表明:(1)在静息电位附近,慢肌纤维小终板电流的τ值大于快肌纤维的;(2)慢肌纤维的A值比快肌纤维的小的多,即τ值较少随膜电位变化。本文对上述不同曾加以讨论。 相似文献
16.
Neuromuscular synapses from the single excitor axon to the proximal accessory flexor muscle (PAFM) was studied by serial section electron microscopy in a 1st stage larval (< 0.1 g) and a large adult (6.8 kg) lobster. The adult innervation of a lateral and a medial fiber, physiologically identified as low- and high-output respectively, was similar in the number and mean size of synapses but had significantly larger pre-synaptic dense bars for the high-output synapses. This correlation between quantal transmitter output and pre-synaptic dense bars and the appearance of exocytotic profiles along the dense bars strongly implicates the bars as active sites of transmitter release. Moreover the mature innervation is differentiated on the basis that the percentage of dense bar area to synaptic area is 9% for the low-output type compared to 22% for its high-output counterpart. In the larval PAFM the excitatory axon has not proliferated many branches and the innervation is therefore localized to groups of fibers in the lateral, medial and central regions of the muscle rather than to individual fibers. The lateral and medial sites of innervation representing putative low- and high-output types respectively (because of their location) do not differ in the size and number of pre-synaptic dense bars thereby suggesting a similarity in quantal synaptic transmission. However the percentage of dense bar area to synaptic area is 40% for the lateral site compared to 67% for the medial site. Since this is a trend mimicking the mature innervation it shows an early stage in the differentiation of low-and high-output synapses. Furthermore the main axon provides half of the total innervation in the larval PAFM but none in the adult thereby demonstrating a restructuring of multiterminal innervation. 相似文献
17.
18.
The inability of synaptic junctions to generate normalsized postsynaptic potentials under normal physiological conditions was studied at crayfish neuromuscular synapses. Synaptic repression in the superficial flexor muscle system of the crayfish was induced by surgery: the nerve was cut in the middle of the target field, and the lateral muscle fibers were removed. After this surgery, the remaining medial synapses were unable to generate normal-sized junction potentials (jp) over the medial muscle population. In an attempt to study the mechanism underlying this response, we varied the extracellular calcium concentration of the Ringers solution bathing the preparation, in both repressed and control animals, while monitoring the size of the same junction potential. The junction potential generated by the spontaneous activity of the nerve increased in size with increasing calcium concentrations in control animals, but failed to do so in repressed animals, that is, changes in external calcium concentrations did not affect repressed synapses. However, in the presence of the calcium ionophore A23187, control and repressed synapses both show an increase in the junction potential sizes they generate. Our data suggest that calcium is involved in the mechanisms that underlie synaptic repression in this crustacean neuromuscular system. © 1993 John Wiley & Sons, Inc. 相似文献
19.
Percival JM Gregorevic P Odom GL Banks GB Chamberlain JS Froehner SC 《Traffic (Copenhagen, Denmark)》2007,8(10):1424-1439
Muscular dystrophies are a diverse group of severe degenerative muscle diseases. Recent interest in the role of the Golgi complex (GC) in muscle disease has been piqued by findings that several dystrophies result from mutations in putative Golgi-resident glycosyltransferases. Given this new role of the Golgi in sarcolemmal stability, we hypothesized that abnormal Golgi distribution, regulation and/or function may constitute part of the pathology of other dystrophies, where the primary defect is independent of Golgi function. Thus, we investigated GC organization in the dystrophin-deficient muscles of mdx mice, a mouse model for Duchenne muscular dystrophy. We report aberrant organization of the synaptic and extrasynaptic GC in skeletal muscles of mdx mice. The GC is mislocalized and improperly concentrated at the surface and core of mdx myofibers. Golgi complex localization is disrupted after the onset of necrosis and normal redistribution is impaired during regeneration of mdx muscle fibers. Disruption of the microtubule cytoskeleton may account in part for aberrant GC localization in mdx myofibers. Golgi complex distribution is restored to wild type and microtubule cytoskeleton organization is significantly improved by recombinant adeno-associated virus 6-mediated expression of DeltaR4-R23/DeltaCT microdystrophin showing a novel mode of microdystrophin functionality. In summary, GC distribution abnormalities are a novel component of mdx skeletal muscle pathology rescued by microdystrophin expression. 相似文献
20.
Acetylcholinesterase-associated collagen Q is expressed also outside of neuromuscular junctions in the slow soleus muscle, but not in fast muscles. We examined the nerve dependence of muscle collagen Q expression and mechanisms responsible for these differences. Denervation decreased extrajunctional collagen Q mRNA levels in the soleus muscles and junctional levels in fast sternomastoid muscles to about one third. Cross-innervation of denervated soleus muscles by a fast muscle nerve, or electrical stimulation by 'fast' impulse pattern, reduced their extrajunctional collagen Q mRNA levels by 70–80%. In contrast, stimulation of fast muscles by 'slow' impulse pattern had no effect on collagen Q expression. Calcineurin inhibitors tacrolimus and cyclosporin A decreased collagen Q mRNA levels in the soleus muscles to about 35%, but did not affect collagen Q expression in denervated soleus muscles or the junctional expression in fast muscles. Therefore, high extrajunctional expression of collagen Q in the soleus muscle is maintained by its tonic nerve-induced activation pattern via the activated Ca2+ -calcineurin signaling pathway. The extrajunctional collagen Q expression in fast muscles is independent of muscle activation pattern and seems irreversibly suppressed. The junctional expression of collagen Q in fast muscles is partly nerve-dependent, but does not encompass the Ca2+ -calcineurin signaling pathway. 相似文献