首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of RAD52 epistasis group genes on spontaneous mitotic recombination was examined using three different types of spontaneous mitotic recombination in Saccharomyces cerevisiae. The spontaneous recombination between homologous sequences in a plasmid and a chromosome was essentially unaffected by null mutations in any of the RAD52 epistasis group genes. Recombination between genes in separate autonomously replicating plasmids was reduced 833-fold in a rad52 null mutant, but only 2- to at most 20-fold in rad50, 51, 54, 55, 57 null mutants. Recombination between tandemly repeated heteroalleles in an autonomously replicating plasmid was reduced almost 100-fold in a rad52 null mutant, but is either unaffected or slightly increased in rad50, 51, 54, 55, 57 null mutants. The finding that RAD50, 51, 54, 55, 57 are dispensable or marginally involved in these spontaneous recombinations suggests further that spontaneous mitotic recombination in S. cerevisiae might be processed by other than RAD52 epistasis group.  相似文献   

2.
The RAD54 gene, which encodes a protein in the SWI2/SNF2 family, plays an important role in recombination and DNA repair in Saccharomyces cerevisiae. The yeast genome project revealed a homologue of RAD54, RDH54/TID1. Properties of the rdh54/tid1 mutant and the rad54 rdh54/tid1 double mutant are shown for mitosis and meiosis. The rad54 mutant is sensitive to the alkylating agent, methyl methanesulfonate (MMS), and is defective in interchromosomal and intrachromosomal gene conversion. The rdh54/tid1 single mutant, on the other hand, does not show any significant deficiency in mitosis. However, the rad54 rdh54/tid1 mutant is more sensitive to MMS and more defective in interchromosomal gene conversion than is the rad54 mutant, but shows the same frequency of intrachromosomal gene conversion as the rad54 mutant. These results suggest that RDH54/TID1 is involved in a minor pathway of mitotic recombination in the absence of RAD54. In meiosis, both single mutants produce viable spores at slightly reduced frequency. However, only the rdh54/tid1 mutant, but not the rad54 mutant, shows significant defects in recombination: retardation of the repair of meiosis-specific double-strand breaks (DSBs) and delayed formation of physical recombinants. Furthermore, the rad54 rdh54/tid1 double mutant is completely defective in meiosis, accumulating DSBs with more recessed ends than the wild type and producing fewer physical recombinants than the wild type. These results suggest that one of the differences between the late stages of mitotic recombination and meiotic recombination might be specified by differential dependency on the Rad54 and Rdh54/Tid1 proteins.  相似文献   

3.
The RAD52 and RAD54 genes in the yeast Saccharomyces cerevisiae are involved in both DNA repair and DNA recombination. RAD54 has recently been shown to be inducible by X-rays, while RAD52 is not. To further investigate the regulation of these genes, we constructed gene fusions using 5' regions upstream of the RAD52 and RAD54 genes and a 3'-terminal fragment of the Escherichia coli beta-galactosidase gene. Yeast transformants with either an integrated or an autonomously replicating plasmid containing these fusions expressed beta-galactosidase activity constitutively. In addition, the RAD54 gene fusion was inducible in both haploid and diploid cells in response to the DNA-damaging agents X-rays, UV light, and methyl methanesulfonate, but not in response to heat shock. The RAD52-lacZ gene fusion showed little or no induction in response to X-ray or UV radiation nor methyl methanesulfonate. Typical induction levels for RAD54 in cells exposed to such agents were from 3- to 12-fold, in good agreement with previous mRNA analyses. When MATa cells were arrested in G1 with alpha-factor, RAD54 was still inducible after DNA damage, indicating that the observed induction is independent of the cell cycle. Using a yeast vector containing the EcoRI structural gene fused to the GAL1 promoter, we showed that double-strand breaks alone are sufficient in vivo for induction of RAD54.  相似文献   

4.
The RAD52 and RAD50 genes have previously been shown to be required for normal meiotic recombination and for various types of recombination occurring in mitotic cells. Recent evidence suggests that rad52 mutants might be defective in an intermediate recombination step; we therefore examined recombination during meiosis in several rad52 mutants at several different loci and in genetic backgrounds that yield efficient sporulation and synchronous meiosis. Similar to previous reports, spores from rad52 diploids are inviable and meiotic recombination is greatly reduced by rad52 mutations. However, intragenic recombinants were detected when cells were plated on selective media during meiosis; rad52 mutants experience induction of recombination between homologues under these special conditions. The frequencies of recombination at four loci were considerably greater than the mitotic controls; however, they were still at least 20 times lower than corresponding Rad+ strains. The prototrophs induced by meiosis in rad52 mutants were not typical meiotic recombinants because incubation in nutrient-rich medium before plating to selective medium resulted in the complete loss of recombinants. We propose that previously observed single-strand breaks that accumulate in rad52 mutants may be associated with recombinational intermediates that are resolved when cells are returned to selective mitotic media and that the meiosis-induced recombination in rad52 cells does not involve double-strand breaks.  相似文献   

5.
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.  相似文献   

6.
Mott C  Symington LS 《DNA Repair》2011,10(4):408-415
Recombination between inverted repeats is RAD52 dependent, but reduced only modestly in the rad51Δ mutant. RAD59 is required for RAD51-independent inverted-repeat recombination, but no clear mechanism for how recombination occurs in the absence of RAD51 has emerged. Because Rad59 is thought to function as an accessory factor for the single-strand annealing activity of Rad52 one possible mechanism for spontaneous recombination could be by strand annealing between repeats at a stalled replication fork. Here we demonstrate the importance of the Rad52 single-strand annealing activity for generating recombinants by showing suppression of the rad52Δ, rad51Δ rad52Δ and rad52Δ rad59Δ inverted-repeat recombination defects by the rfa1-D228Y mutation. In addition, formation of recombinants in the rad51Δ mutant was sensitive to the distance between the inverted repeats, consistent with a replication-based mechanism. Deletion of RAD5 or RAD18, which are required for error-free post-replication repair, reduced the recombination rate in the rad59Δ mutant, but not in wild type. These data are consistent with RAD51-independent recombinants arising by a faulty template switch mechanism that is distinct from nascent strand template switching.  相似文献   

7.
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.  相似文献   

8.
To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.5-fold over the control. We found that deletion of the RAD52 gene, which has a key role in most HR events, abolished the increase of HR induced by the proteasome subunits and HRAS; by contrast, the RAD52 deletion did not affect the high level of HR due to BASP1 and RPL12. This suggests that the proteins stimulated yeast HR via different mechanisms. Overexpression of the complete beta 2 human proteasome subunit or the partially deleted alpha 3 and beta 8 subunits increased methyl methanesulphonate (MMS) resistance much more in the rad52 Delta mutant than in the wild-type. Overexpression of RPL12 and BASP1 did not affect MMS resistance in both the wild-type and the rad52 Delta mutant, whereas HRAS decreased MMS resistance in the rad52 Delta mutant. The results indicate that these proteins may interfere with the pathway(s) involved in the repair of MMS-induced DNA damage. Finally, we provide further evidence that yeast is a helpful tool to identify human proteins that may have a regulatory role in HR.  相似文献   

9.
Coïc E  Feldman T  Landman AS  Haber JE 《Genetics》2008,179(1):199-211
In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast.  相似文献   

10.
We have screened for mutations of the Saccharomyces cerevisiae RAD52 gene which confer a temperature-sensitive (ts) phenotype with respect to either the repair of DNA lesions caused by methyl methanesulfonate (MMS) or the recombination of an intrachromosomal recombination reporter. We were readily able to isolate alleles ts for the repair of lesions caused by MMS but were unable to find alleles with a severe ts deficiency in intrachromosomal recombination. We extensively characterized four strains conferring ts growth on MMS agar. These strains also exhibit ts survival when exposed to γ-radiation or when the HO endonuclease is constitutively expressed. Although none of the four alleles confers a severe ts defect in intrachromosomal recombination, two confer significant defects in tests of mitotic, interchromosomal recombination carried out in diploid strains. The mutant diploids sporulate, but the two strains with defects in interchromosomal recombination have reduced spore viability. Meiotic recombination is not depressed in the two diploids with reduced spore viability. Thus, in the two strains with reduced spore viability, defects in mitotic and meiotic recombination do not correlate. Sequence analysis revealed that in three of the four ts alleles the causative mutations are in the first one-third of the open reading frame while the fourth is in the C-terminal third.  相似文献   

11.
The RAD52 gene of Saccharomyces cerevisiae is essential for repair of DNA double-strand breaks (DSBs) by homologous recombination. Inactivation of this gene confers hypersensitivity to DSB-inducing agents and defects in most forms of recombination. The rad22+ gene in Schizosaccharomyces pombe (here referred to as rad22A+) has been characterized as a homolog of RAD52 in fission yeast. Here, we report the identification of a second RAD52 homolog in Schizosaccharomyces pombe, called rad22B+. The amino acid sequences of Rad22A and Rad22B show significant conservation (38% identity). Deletion mutants of respectively, rad22A and rad22B, show different phenotypes with respect to sensitivity to X-rays and the ability to perform homologous recombination as measured by the integration of plasmid DNA. Inactivation of rad22A+ leads to a severe sensitivity to X-rays and a strong decrease in recombination (13-fold), while the rad22B mutation does not result in a decrease in homologous recombination or a change in radiation sensitivity. In a rad22A-rad22B double mutant the radiation sensitivity is further enhanced in comparison with the rad22A single mutant. Overexpression of the rad22B+ gene results in partial suppression of the DNA repair defects of the rad22A mutant strain. Meiotic recombination and spore viability are only slightly affected in either single mutant, but outgrowth of viable spores is almost 31-fold reduced in the rad22A-rad22B double mutant. The results obtained imply a crucial role for rad22A+ in repair and recombination in vegetative cells just like RAD52 in S. cerevisiae. The rad22B+ gene presumably has an auxiliary role in the repair of DSBs. The drastic reduced spore viability in the double mutant suggests that meiosis in S. pombe is dependent on the presence of either rad22A+ or rad22B+.  相似文献   

12.
Restriction enzyme-mediated events (REM events; integration of transforming DNA catalyzed by in vivo action of a restriction enzyme) and illegitimate recombination events (IR events; integration of transforming DNA that shares no homology with the host genomic sequences) have been previously characterized in Saccharomyces cerevisiae. This study determines the effect of mutations in genes that are involved in homologous recombination and/or in the repair of double-stranded DNA breaks on these recombination events. Surprisingly, REM events are completely independent of the double-strand-break repair functions encoded by the RAD51, RAD52, and RAD57 genes but require the RAD50 gene product. IR events are under different genetic control than homologous integration events. In the rad50 mutant, homologous integration occurred at wild-type frequency, whereas the frequency of IR events was 20- to 100-fold reduced. Conversely, the rad52 mutant was grossly deficient in homologous integration (at least 1,000-fold reduced) but showed only a 2- to 8-fold reduction in IR frequency.  相似文献   

13.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

14.
15.
Mutations in the REM1 gene of Saccharomyces cerevisiae confer a semidominant hyper-recombination and hypermutable phenotype upon mitotic cells ( GOLIN and ESPOSITO 1977). These effects have not been observed in meiosis. We have examined the interactions of rem1 mutations with rad6-1, rad50 -1, rad52-1 or spo11 -1 mutations in order to understand the basis of the rem1 hyper-rec phenotype. The rad mutations have pleiotropic phenotypes; spo11 is only defective in sporulation and meiosis. The RAD6, RAD50 and SPO11 genes are not required for spontaneous mitotic recombination; mutations in the RAD52 gene cause a general spontaneous mitotic Rec- phenotype. Mutations in RAD50 , RAD52 or SPO11 eliminate meiotic recombination, and mutations in RAD6 prevent spore formation. Evidence for the involvement of RAD6 in meiotic recombination is less clear. Mutations in all three RAD genes confer sensitivity to X rays; the RAD6 gene is also required for UV damage repair. To test whether any of these functions might be involved in the hyper-rec phenotype conferred by rem1 mutations, double mutants were constructed. Double mutants of rem1 spo11 were viable and demonstrated rem1 levels of mitotic recombination, suggesting that the normal meiotic recombination system is not involved in producing the rem1 phenotype. The rem1 rad6 double mutant was also viable and had rem1 levels of mitotic recombination. Neither rem1 rad50 nor rem1 rad52 double mutants were viable. This suggests that rem1 causes its hyper-rec phenotype because it creates lesions in the DNA that are repaired using a recombination-repair system involving RAD50 and RAD52.  相似文献   

16.
The RAD1 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of damaged DNA. In this paper, we report our observations on the effect of the RAD1 gene on genetic recombination. Mitotic intrachromosomal and interchromosomal recombination in RAD+, rad1, rad52, and other rad mutant strains was examined. The rad1 deletion mutation and some rad1 point mutations reduced the frequency of intrachromosomal recombination of a his3 duplication, in which one his3 allele is deleted at the 3' end while the other his3 allele is deleted at the 5' end. Mutations in the other excision repair genes, RAD2, RAD3, and RAD4, did not lower recombination frequencies in the his3 duplication. As expected, recombination between the his3 deletion alleles in the duplication was reduced in the rad52 mutant. The frequency of HIS3+ recombinants fell synergistically in the rad1 rad52 double mutant, indicating that the RAD1 and RAD52 genes affect this recombination via different pathways. In contrast to the effect of mutations in the RAD52 gene, mutations in the RAD1 gene did not lower intrachromosomal and interchromosomal recombination between heteroalleles that carry point mutations rather than partial deletions; however, the rad1 delta mutation did lower the frequency of integration of linear plasmids and DNA fragments into homologous genomic sequences. We suggest that RAD1 plays a role in recombination after the formation of the recombinogenic substrate.  相似文献   

17.
Tsutsui Y  Morishita T  Iwasaki H  Toh H  Shinagawa H 《Genetics》2000,154(4):1451-1461
To identify Schizosaccharomyces pombe genes involved in recombination repair, we identified seven mutants that were hypersensitive to both methyl methanesulfonate (MMS) and gamma-rays and that contained mutations that caused synthetic lethality when combined with a rad2 mutation. One of the mutants was used to clone the corresponding gene from a genomic library by complementation of the MMS-sensitive phenotype. The gene obtained encodes a protein of 354 amino acids whose sequence is 32% identical to that of the Rad57 protein of Saccharomyces cerevisiae. An rhp57 (RAD57 homolog of S. pombe) deletion strain was more sensitive to MMS, UV, and gamma-rays than the wild-type strain and showed a reduction in the frequency of mitotic homologous recombination. The MMS sensitivity was more severe at lower temperature and was suppressed by the presence of a multicopy plasmid bearing the rhp51 gene. An rhp51 rhp57 double mutant was as sensitive to UV and gamma-rays as an rhp51 single mutant, indicating that rhp51 function is epistatic to that of rhp57. These characteristics of the rhp57 mutants are very similar to those of S. cerevisiae rad57 mutants. Phylogenetic analysis suggests that Rhp57 and Rad57 are evolutionarily closest to human Xrcc3 of the RecA/Rad51 family of proteins.  相似文献   

18.
Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions (the rare transformants which are obtained contain plasmids resulting from deletion-forming intramolecular events involving little or no sequence homology); (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product.  相似文献   

19.
An intrachromosomal recombination assay that monitors events between alleles of the ade2 gene oriented as inverted repeats was developed. Recombination to adenine prototrophy occurred at a rate of 9.3 X 10(-5)/cell/generation. Of the total recombinants, 50% occurred by gene conversion without crossing over, 35% by crossover and 15% by crossover associated with conversion. The rate of recombination was reduced 3,000-fold in a rad52 mutant, but the distribution of residual recombination events remained similar to that seen in the wild type strain. In rad51 mutants the rate of recombination was reduced only 4-fold. In this case, gene conversion events unassociated with a crossover were reduced 18-fold, whereas crossover events were reduced only 2.5-fold. A rad51 rad52 double mutant strain showed the same reduction in the rate of recombination as the rad52 mutant, but the distribution of events resembled that seen in rad51. From these observations it is concluded that (i) RAD52 is required for high levels of both gene conversions and reciprocal crossovers, (ii) that RAD51 is not required for intrachromosomal crossovers, and (iii) that RAD51 and RAD52 have different functions, or that RAD52 had functions in addition to those of the Rad51/Rad52 protein complex.  相似文献   

20.
Rattray AJ  Shafer BK  McGill CB  Strathern JN 《Genetics》2002,162(3):1063-1077
The DNA synthesis associated with recombinational repair of chromosomal double-strand breaks (DSBs) has a lower fidelity than normal replicative DNA synthesis. Here, we use an inverted-repeat substrate to monitor the fidelity of repair of a site-specific DSB. DSB induction made by the HO endonuclease stimulates recombination >5000-fold and is associated with a >1000-fold increase in mutagenesis of an adjacent gene. We demonstrate that most break-repair-induced mutations (BRIMs) are point mutations and have a higher proportion of frameshifts than do spontaneous mutations of the same substrate. Although the REV3 translesion DNA polymerase is not required for recombination, it introduces approximately 75% of the BRIMs and approximately 90% of the base substitution mutations. Recombinational repair of the DSB is strongly dependent upon genes of the RAD52 epistasis group; however, the residual recombinants present in rad57 mutants are associated with a 5- to 20-fold increase in BRIMs. The spectrum of mutations in rad57 mutants is similar to that seen in the wild-type strain and is similarly affected by REV3. We also find that REV3 is required for the repair of MMS-induced lesions when recombinational repair is compromised. Our data suggest that Rad55p/Rad57p help limit the generation of substrates that require pol zeta during recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号