首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Recent reports indicate that murine CD4+ Th1-type cloned T cells are insensitive to IL-1 because specific IL-1R are not detected on these cells and IL-1 does not modulate proliferative responses. However, we have determined that Th1 clones can respond to IL-1, because they function synergistically with IL-2 to induce granulocyte-macrophage-CSF secretion. This response to IL-1 plus IL-2 could be induced by IL-1 alpha or IL-1 beta and by membrane-bound IL-1 on macrophages. However, IL-1R could not be detected, and Th1 cells did not respond to IL-4 in the presence or absence of IL-1, as measured by either proliferation or granulocyte-macrophage-CSF production. Therefore, IL-1 functioned as a cofactor in Th1 cells stimulated with IL-2, but not with IL-4. A possible mechanism whereby IL-1 activates Th1 cells is discussed.  相似文献   

2.
A number of cytokines were tested for their ability to modulate HLA-DR Ag expression on normal human monocytes. IL-4, granulocyte-macrophage (GM)-CSF as well as IFN-gamma were able to increase HLA-DR Ag expression on monocytes. IFN-alpha was also able to augment HLA-DR Ag expression, but to a lesser degree. Macrophage-CSF, granulocyte-CSF, TNF-alpha, TNF-beta, and IL-6 were not able to augment HLA-DR Ag expression. There were distinct patterns in the ability of different cytokines to augment class II histocompatibility Ag expression. IL-4 and GM-CSF selectively increased only HLA-DR and HLA-DP, but did not increase HLA-DQ antigens on monocytes. IFN-gamma, however, was able to augment the expression of HLA-DR, HLA-DP, and HLA-DQ Ag. Combinations of IFN-gamma with either IL-4 or GM-CSF did not show any synergy for the augmentation of any of the class II antigens on monocytes.  相似文献   

3.
4.
GM-CSF production by RPE cells, which form part of the blood-retina barrier, is upregulated by IL-1beta and this increase can be reversed by IFN-gamma. IL-1beta up-regulation is not dependent on PKC but the PKC activator PMA induces low levels of GM-CSF production and acts synergistically with IL-1beta to further increase GM-CSF. Although A23187 and ionomycin stimulated low levels of GM-CSF production, the IL-1beta pathway was cyclosporin A insensitive and did not interact with the calcium pathway. IL-1beta-stimulated GM-CSF mRNA expression and production was strongly dependent on NF-kappaB. IFN-gamma inhibition of the GM-CSF response to IL-1beta acted via NF-kappaB, reducing the translocation of NF-kappaB to the nuclei of RPE cells treated with IL-1beta and IFN-gamma. The results show that IFN-gamma down-regulation acts either directly on NF-kappaB or its activation or by blockade of a pathway upstream of NF-kappaB. However, any such blockade does not involve PKC or intracellular calcium.  相似文献   

5.
6.
IL-3 and granulocyte-macrophage CSF are hemopoietic growth factors involved in monocytopoiesis and functional stimulation of circulating blood monocytes. We demonstrate that both cytokines enhance the adhesion of purified human monocytes to cultured human umbilical vein endothelial cells and to plastic surfaces. The stimulation seen was biphasic: an early phase detectable by 10 min, and a late phase seen after 9 h of in vitro culture. IL-3- and granulocyte-macrophage-CSF-stimulated adhesion was seen at concentrations as low as 6 pM, with maximal monocyte adhesion of up to 60% seen at concentrations of 60 pM and above. Both phases of stimulated adhesion were partially inhibited by a monoclonal antibody to CD18, the common beta-chain of the leukocyte functional Ag family of adhesion molecules, but not by an antibody to CD11b, the alpha-chain of MAC-1. However, a difference in the mechanism by which the early and late phases of stimulated adhesion arise could be shown by the use of cycloheximide as an inhibitor of protein synthesis. Although the late phase was totally dependent on de novo protein synthesis, early phase adhesion was not inhibited by cycloheximide, suggesting receptor redistribution or conformational change as the mechanism mediating enhanced adhesion at this time. These findings may be relevant to the pathogenesis of inflammatory disease and may have implications for the clinical use of these cytokines.  相似文献   

7.
The regulation of human IFN-gamma receptor (IFN-gamma-R) expression by granulocyte-macrophage CSF (GM-CSF) was investigated. On monocytic cell lines (U937, HL60) and peripheral blood monocytes, IFN-gamma-binding capacity was down-regulated upon incubation with GM-CSF. Scatchard plot analyses revealed that down-regulation was caused by a decrease in IFN-gamma-R number rather than by a change in affinity. GM-CSF treatment did not reduce IFN-gamma-R-specific mRNA levels, but reduced the half-life of membrane-expressed IFN-gamma-R, indicating a post-translational control of IFN-gamma-R by GM-CSF. Because both IFN-gamma and GM-CSF are crucially involved in activation of monocytic function, the data presented suggest that down-regulation of IFN-gamma-R by GM-CSF may represent a potential negative feedback control of monocyte activation. Further studies of IFN-gamma binding characteristics and isolation of IFN-gamma-R by immunoprecipitation revealed that IFN-gamma binding to human peripheral blood monocytes is mediated by a receptor protein structurally and functionally identical to that previously characterized in several established cell lines of other tissue origin.  相似文献   

8.
An interleukin 1 (IL 1) inhibitor is secreted into culture medium by a human promyelocytic cell line, H-161, upon stimulation with (PMA) and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF). Since the morphological characteristics of this cell line were macrophage-like, human monocytes were tested for their ability to produce similar activity using the same induction conditions. Upon induction of adherent peripheral blood monocytes with rhGM-CSF and/or PMA, an IL 1 antagonistic activity was found in the cell supernatants, as determined by IL 1 receptor binding assay, using the murine EL-4.6.1C10 cell line as the cell target. Most of the inhibition of IL 1 binding induced by PMA or by PMA/rhGM-CSF was shown to be caused by IL 1, since it was neutralized by a mixture of anti-IL 1 alpha/beta antibodies and was active in the murine thymocyte proliferation assay (LAF). The activity induced by GM-CSF alone was not neutralized by anti-IL 1 alpha/beta antibodies and showed no LAF activity. The IL 1 inhibitor activity was induced by rhGM-CSF with a D50 around 40 pg/ml. The activity was produced for more than 3 wk in the presence of GM-CSF; removal of GM-CSF was followed by a rapid decrease of IL 1 antagonistic activity. The specific binding of biosynthetically labeled IL 1 inhibitor to target cells (EL-4.6.1C10) showed a protein of 26 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This molecule shares biological and physical characteristics with the urinary IL 1 inhibitor and the promyelocytic H-161-derived IL 1 inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A mouse mAb (TOMS-1) was generated against human blood monocytes that had been cultured for 4 days in medium with recombinant human granulocyte-macrophage CSF (GM-CSF). TOMS-1 (IgG1) detected a unique cell surface Ag with a molecular mass of about 43 kDa under both reducing and nonreducing conditions. TOMS-1Ag was expressed on monocytes treated with GM-CSF, but not on fresh or untreated monocytes. This Ag was induced dose dependently during culture of monocytes with GM-CSF for more than 24 h, reaching a maximum level in 3 or 4 days. Treatment of monocytes with cycloheximide in the presence of GM-CSF blocked TOMS-1Ag induction completely, indicating that de novo protein synthesis was required for its expression. TOMS-1Ag was also induced by treatment of monocytes with IL-3, but not with other cytokines such as macrophage-CSF, IL-4, and IFN-gamma or stimulators including LPS, desmethyl muramyl dipeptide, and PMA. TOMS-1Ag expression induced by GM-CSF was up-regulated by IL-4, but down-regulated by IFN-gamma. TOMS-1Ag was not induced on lymphocytes, granulocytes, or AM by GM-CSF or appropriate stimuli. TOMS-1Ag was also not expressed on any cell lines of human leukemias or solid tumors examined. Thus, TOMS-1Ag is a monocyte-specific differentiation Ag induced by GM-CSF or IL-3. These results suggest that TOMS-1 should be useful for monitoring the process of monocyte differentiation by GM-CSF or IL-3.  相似文献   

10.
Macrophages are known to possess suppressor activities in immune responses. To determine the effects of GM-CSF and M-CSF on the expression of macrophage suppressor activities, monocyte-derived macrophages cultured with GM-CSF (GM-Mphis) were compared with those cultured with M-CSF (M-Mphis) for antigen-specific proliferation and interferon-gamma (IFN-gamma) production by lymphocytes. Both GM-Mphis and M-Mphis equally suppressed lymphocyte proliferation, but only M-Mphis suppressed IFN-gamma production in response to purified protein derivative (PPD). M-Mphis, but not GM-Mphis, released IL-10 not only in the course of macrophage differentiation but also in response to PPD after maturation to macrophages. From the results that (i) exogenous IL-10 suppressed IFN-gamma production, but not proliferation of lymphocytes, and that (ii) neutralizing antibody to IL-10 reversed suppressor activities of M-Mphis on IFN-gamma production, but not lymphocyte proliferation, it appeared that IL-10 was the major factor responsible for suppression of IFN-gamma production. Thus, these results suggest that only M-CSF augments IL-10-dependent suppressor activity of macrophages on IFN-gamma production and that both GM-CSF and M-CSF induce IL-10-independent macrophage suppressor activity on lymphocyte proliferation.  相似文献   

11.
The functional role of the predicted first alpha-helix of human granulocyte-macrophage colony-stimulating factor (GM-CSF) was analysed by site-directed mutagenesis and multiple biological and receptor binding assays. Initial deletion mutagenesis pointed to residues 20 and 21 being critical. Substitution mutagenesis showed that by altering Gln20 to Ala full GM-CSF activity was retained but that by altering Glu21 for Ala GM-CSF activity and high affinity receptor binding were decreased. Substitution of different amino acids for Glu21 showed that there was a hierarchy in the ability to stimulate the various biological activities of GM-CSF with the order of potency being Asp21 greater than Ser21 greater than Ala21 greater than Gln21 greater than Lys21 = Arg21. To distinguish whether position 21 was important for GM-CSF binding to high or low affinity receptors, GM-CSF (Arg21) was used as a competitor for [125I]GM-CSF binding to monocytes that express both types of receptor. GM-CSF (Arg21) exhibited a greatly reduced capacity to compete for binding to high affinity receptors, however, it competed fully for [125I]GM-CSF binding to low affinity receptors. Furthermore, GM-CSF (Arg21) was equipotent with wild-type GM-CSF in binding to the cloned low affinity alpha-chain of the GM-CSF receptor. These results show that (i) this position is critical for high affinity but not for low affinity GM-CSF receptor binding thus defining two functional parts of the GM-CSF molecule; (ii) position 21 of GM-CSF is critical for multiple functions of GM-CSF; and (iii) stimulation of proliferation and mature cell function by GM-CSF are mediated through high affinity receptors.  相似文献   

12.
The objective of these experiments was to evaluate the production of IL-1ra, a specific receptor antagonist of IL-1, by human in vitro-derived macrophages, a model for differentiated macrophages. IL-1ra protein levels in supernatants and lysates of cultured cells were determined by a specific ELISA. Relative steady-state IL-1ra mRNA levels were measured using a specific cDNA probe. Human monocytes were differentiated by 6 days culture in either medium or granulocyte-macrophage colony-stimulating factor (GM-CSF), after which the effects of subsequent LPS and/or GM-CSF on the production of IL-1ra were evaluated. In vitro-derived macrophages cultured in medium for 6 days constitutively produced IL-1ra protein during the 24-h period of the 7th day in culture. The constitutive production of IL-1ra by medium-aged cells correlated with low steady-state IL-1ra mRNA levels determined over this same time period. In contrast, cells cultured for 6 days in GM-CSF synthesized significantly increased levels of IL-1ra protein during the 7th day in culture but the secreted levels remained unchanged. Cells differentiated in GM-CSF displayed enhanced steady-state levels of IL-1ra mRNA in comparison with cells aged in medium. Stimulation of in vitro-derived macrophages aged for 6 days in medium or in GM-CSF, with LPS or adherent IgG, did not result in increased levels of IL-1ra protein production in comparison with non-LPS stimulated cells. The IL-1ra protein detected in the supernatants of cells differentiated in GM-CSF was biologically active in the IL-1-augmented murine thymocyte proliferation assay. By Western blot analysis, the IL-1ra protein in the in vitro-derived macrophage supernatants was predominantly the 22- to 24-kDa glycosylated species, whereas the lysates contained additional lower molecular weight forms. These results suggest that as monocytes differentiate in vitro into macrophages, they constitutively produce IL-1ra protein and that this production is enhanced by the continuous presence of GM-CSF.  相似文献   

13.
14.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that stimulates myeloid cell proliferation and maturation and enhances the function of terminally differentiated effector cells. Phase I and II clinical trials have demonstrated mild to moderate toxicities at doses of less than 30 micrograms/kg/day. These studies suggest a potential role for this growth factor to stimulate myelopoiesis in patients with aplastic anemia, myelodysplastic syndromes, AIDS, chemotherapy-induced myelosuppression, chronic neutropenia, and following bone marrow transplantation. The potential clinical uses of GM-CSF will depend on results of studies designed to optimize its therapeutic efficacy.  相似文献   

15.
Granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF enhance phagocyte survival and function and are produced by fibroblasts and endothelial cells after induction by inflammatory mediators such as IL-1. Our ability to detect G-CSF and GM-CSF activity in the conditioned medium of the human astroglial tumor cell line, U87MG, and molecularly clone the cDNA for G-CSF from a U87MG cDNA library raised the possibility that astroglial cells are capable of G-CSF and GM-CSF production within the central nervous system; if so, the production of these CSF by astroglial cells may be inducible by IL-1. We examined the effects of IL-1 alpha and IL-1 beta on the production of G-CSF and GM-CSF by U87MG and U373MG, another astroglial tumor cell line that does not constitutively produce CSF. We demonstrate that both U87MG and U373MG can be induced to produce G-CSF and GM-CSF by exposure to IL-1 alpha and IL-1 beta. This response, measured by accumulation of increased CSF mRNA, is rapid, sensitive and due to the enhanced stability of CSF message following IL-1 exposure. The implications of these findings to the immunopathogenesis of central nervous system infections are discussed.  相似文献   

16.
17.
The high affinity receptor of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is a heterodimer composed of two members of the cytokine receptor superfamily. GM-CSF binds to the alpha-subunit (GM-R alpha) with low affinity and to the receptor alpha beta complex (GM-R alpha beta) with high affinity. The GM-CSF.GM-R alpha beta complex is responsible for biological activity. Interactions of the N-terminal helix of mouse GM-CSF with mGM-R alpha beta were examined by introducing single alanine substitutions of hydrophilic residues in this region of mGM-CSF. The consequences of these substitutions were evaluated by receptor binding and biological assays. Although all mutant proteins exhibited near wild-type biological activity, most were defective in high affinity receptor binding. In particular, substitution of Glu-21 with alanine abrogated high affinity binding leaving low affinity binding unaffected. Despite near wild-type biological activity, no detectable binding interaction of this mutant with mGM-R beta in the context of mGM-R alpha beta was observed. Cross-linking studies showed an apparent interaction of this mutant protein with mGM-R alpha beta. The deficient receptor binding characteristics and near wild-type biological activity of this mutant protein demonstrate that mGM-CSF receptor activation can occur independently of high affinity binding, suggesting that conformational changes in the receptor induced by mGM-CSF binding generate an active ligand-receptor complex.  相似文献   

18.
The phospholipid platelet-activating factor (PAF) is a potent cell-derived bioactive molecule thought to be involved in diverse inflammatory processes. It has been shown that PAF can activate different leukocyte types and platelets, particularly in synergy with other agonists. In this study we examined the effect of PAF upon the release of histamine and leukotriene (LT) C4 by basophils when added alone and in combination with different agonists and cytokines. PAF by itself did neither induce histamine release nor the generation of LTC4 by basophils. However, basophils primed by the hematopoietic growth factors (hGF) IL-3, granulocyte-macrophage (GM)-CSF, or IL-5 (10 ng/ml) released preformed and de novo synthesized mediators in response to PAF at 10 to 100 nM concentrations. The extent of mediator release by hGF primed basophils in response to PAF was similar to that induced by an optimal concentration of monoclonal anti-IgE. Thus, similar to NAP-1/IL-8 and C3a, PAF efficiently stimulates mediator release in hGF-primed basophils only. However, PAF was clearly a more potent trigger of LTC4 formation in IL-3-primed cells than NAP-1/IL-8 or C3a. When PAF was used as a second trigger, the priming effect of IL-5 was less than that of IL-3 or GM-CSF, whereas the response for other IgE-independent agonists (i.e., C5a or FMLP) was augmented equally by all three hGF. IL-1 beta-pretreated basophils released minimal amounts of histamine in response to PAF. Neither TNF-alpha nor PAF, nor the combination thereof, was able to induce basophil mediator release. The efficiency of the different cytokines to prime for PAF responsiveness was strikingly similar to their capacity to enhance anti-IgE-induced mediator release. Similar to other IgE-independent agonists, the kinetic of mediator release in response to PAF was very rapid. PAF pretreatment of basophils did not enhance mediator release in response to diverse agonists, such as C5a and FMLP, in contrast to the capacity of PAF to augment the response of other leukocyte types to appropriate stimuli. Thus, depending on the presence of IL-3, GM-CSF, or IL-5, PAF is a potent basophil agonist capable of inducing histamine release as well as de novo synthesis of LTC4.  相似文献   

19.
Endothelial cells are a potent source of hematopoietic growth factors when stimulated by soluble products of monocytes. Interleukin 1 (IL 1) is released by activated monocytes and is a mediator of the inflammatory response. We determined whether purified recombinant human IL 1 could stimulate cultured human umbilical vein endothelial cells to release hematopoietic growth factors. As little as 1 U/ml of IL 1 stimulated growth factor production by the endothelial cells, and increasing amounts of IL 1 enhanced growth factor production in a dose-dependent manner. Growth factor production increased within 2 to 4 hr and remained elevated for more than 48 hr. To investigate the molecular basis for these findings, oligonucleotide probes for granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), and multi-CSF were hybridized to poly(A)-containing RNA prepared from unstimulated and IL 1-stimulated endothelial cells. Significant levels of GM-CSF and G-CSF, but not M-CSF or multi-CSF, mRNA were detected in the IL 1-stimulated endothelial cells. Biological assays performed on the IL 1-stimulated endothelial cell-conditioned medium confirmed the presence of both GM- and G-CSF. These results demonstrate that human recombinant IL 1 can stimulate endothelial cells to release GM-CSF and G-CSF, and provide a mechanism by which IL 1 could modulate both granulocyte production and function during the course of an inflammatory response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号