首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The origin of skeletal muscle cells in avian iris muscle was investigated by quantitative analysis of heterochromatin profiles at the electron-microscopic level in irides of six types of quail-duck chimeras. Each of the following tissues was transplanted into the head region from quail to duck between stages 9 and 10: cranial neural crest; trunk neural crest; midbrain and adjacent mesoderm; forebrain; forebrain without neural crest; and forebrain without neural crest and mesoderm. The average ratio of heterochromatin profile to nucleus profile in iris skeletal muscle cells was high (quail type) in the dorsal iris, but low (duck type) in the ventral iris of the chimeras resulting from isotopic transplantation of cranial neural crest. Heterotopic transplantation of trunk neural crest to cranial position resulted in failure of development of skeletal muscle cells in the dorsal iris, but not in the appearance of skeletal muscle cells in the ventral iris. The average ratio of heterochromatin profile to nucleus profile in iris skeletal muscle cells was high in the chimeras resulting from transplantation of midbrain region and the chimeras resulting from transplantation of forebrain region, intermediate in the chimeras resulting from transplantation of forebrain region without neural crest, and low in the chimeras resulting from transplantation of forebrain region without neural crest and mesoderm. These results indicate that the skeletal muscle cells in the dorsal iris are of cranial neural crest origin while those in the ventral iris are not, and could possibly arise from cranial mesoderm.  相似文献   

2.
Chimeric mice, generated by aggregating preimplantation embryos, have been instrumental in the study of the development of coat color patterns in mammals. This approach, however, does not allow for direct experimental manipulation of the neural crest cells, which are the precursors of melanoblasts. We have devised a system that allows assessment of the developmental potential and migration of neural crest cells in vivo following their experimental manipulation in vitro. Cultured C57Bl/6 neural crest cells were microinjected in utero into neurulating Balb/c or W embryos and shown to contribute efficiently to pigmentation in the host animal. The resulting neural crest chimeras showed, however, different coat pigmentation patterns depending on the genotype of the host embryo. Whereas Balb/c neural crest chimeras showed very limited donor cell pigment contribution, restricted largely to the head, W mutant chimeras displayed extensive pigmentation throughout, often exceeding 50% of the coat. In contrast to Balb/c chimeras, where the donor melanoblasts appeared to have migrated primarily in the characteristic dorsoventral direction, in W mutants the injected cells appeared to migrate in the longitudinal as well as the dorsoventral direction, as if the cells were spreading through an empty space. This is consistent with the absence of a functional endogenous melanoblast population in W mutants, in contrast to Balb/c mice, which contain a full complement of melanocytes. Our results suggest that the W mutation disturbs migration and/or proliferation of endogenous melanoblasts. In order to obtain information on clonal size and extent of intermingling of donor cells, two genetically marked neural crest cell populations were mixed and coinjected into W embryos. In half of the tricolored chimeras, no co-localization of donor crest cells was observed, while, in the other half, a fine intermingling of donor-derived colors had occurred. These results are consistent with the hypothesis that pigmented areas in the chimeras can be derived from extensive proliferation of a few donor clones, which were able to colonize large territories in the host embryo. We have also analyzed the development of pigmentation in neural crest cultures in vitro, and found that neural tubes explanted from embryos carrying wt or weak W alleles produced pigmented melanocytes while more severe W genotypes were associated with deficient pigment formation in vitro.  相似文献   

3.

Background

In vertebrates, the skeletal elements of the jaw, together with the connective tissues and tendons, originate from neural crest cells, while the associated muscles derive mainly from cranial mesoderm. Previous studies have shown that neural crest cells migrate in close association with cranial mesoderm and then circumscribe but do not penetrate the core of muscle precursor cells of the branchial arches at early stages of development, thus defining a sharp boundary between neural crest cells and mesodermal muscle progenitor cells. Tendons constitute one of the neural crest derivatives likely to interact with muscle formation. However, head tendon formation has not been studied, nor have tendon and muscle interactions in the head.

Methodology/Principal Findings

Reinvestigation of the relationship between cranial neural crest cells and muscle precursor cells during development of the first branchial arch, using quail/chick chimeras and molecular markers revealed several novel features concerning the interface between neural crest cells and mesoderm. We observed that neural crest cells migrate into the cephalic mesoderm containing myogenic precursor cells, leading to the presence of neural crest cells inside the mesodermal core of the first branchial arch. We have also established that all the forming tendons associated with branchiomeric and eye muscles are of neural crest origin and express the Scleraxis marker in chick and mouse embryos. Moreover, analysis of Scleraxis expression in the absence of branchiomeric muscles in Tbx1−/− mutant mice, showed that muscles are not necessary for the initiation of tendon formation but are required for further tendon development.

Conclusions/Significance

This results show that neural crest cells and muscle progenitor cells are more extensively mixed than previously believed during arch development. In addition, our results show that interactions between muscles and tendons during craniofacial development are similar to those observed in the limb, despite the distinct embryological origin of these cell types in the head.  相似文献   

4.
In vertebrates, the eye is an ectodermal compound structure associating neurectodermal and placodal anlagen. In addition, it benefits early on from a mesenchymal ectoderm-derived component, the neural crest. In this respect, the construction of chimeras between quail and chick has been a turning point, instrumental in appraising the contribution of the cephalic neural crest to the development of ocular and periocular structures. Given the variety of crest derivatives underscored in the developing eye, this study illustrates the fascinating ability of this unique structure to finely adapt its differentiation to microenvironmental cues. This analysis of neural crest cell contribution to ocular development emphasizes their paramount role to design the anterior segment of the eye, supply refracting media and contribute to the homeostasy of the anterior optic chamber.  相似文献   

5.
Normal development of the enteric nervous system (ENS) requires the coordinated activity of multiple proteins to regulate the migration, proliferation, and differentiation of enteric neural crest cells. Much of our current knowledge of the molecular regulation of ENS development has been gained from transgenic mouse models and cultured neural crest cells. We have developed a method for studying the molecular basis of ENS formation complementing these techniques. Aneural quail or mouse hindgut, isolated prior to the arrival of neural crest cells, was transplanted into the coelomic cavity of a host chick embryo. Neural crest cells from the chick host migrated to and colonized the grafted hindgut. Thorough characterization of the resulting intestinal chimeras was performed by using immunohistochemistry and vital dye labeling to determine the origin of the host-derived cells, their pattern of migration, and their capacity to differentiate. The formation of the ENS in the intestinal chimeras was found to recapitulate many aspects of normal ENS development. The host-derived cells arose from the vagal neural crest and populated the graft in a rostral-to-caudal wave of migration, with the submucosal plexus being colonized first. These crest-derived cells differentiated into neurons and glial cells, forming ganglionated plexuses grossly indistinguishable from normal ENS. The resulting plexuses were specific to the grafted hindgut, with quail grafts developing two ganglionated plexuses, but mouse grafts developing only a single myenteric plexus. We discuss the advantages of intestinal coelomic transplants for studying ENS development. This work was supported by NIH K08HD46655 (to A.M.G.).  相似文献   

6.
Neural crest cells (NCCs) are vertebrate‐specific transient, multipotent, migratory stem cells that play a crucial role in many aspects of embryonic development. These cells emerge from the dorsal neural tube and subsequently migrate to different regions of the body, contributing to the formation of diverse cell lineages and structures, including much of the peripheral nervous system, craniofacial skeleton, smooth muscle, skin pigmentation, and multiple ocular and periocular structures. Indeed, abnormalities in neural crest development cause craniofacial defects and ocular anomalies, such as Axenfeld‐Rieger syndrome and primary congenital glaucoma. Thus, understanding the molecular regulation of neural crest development is important to enhance our knowledge of the basis for congenital eye diseases, reflecting the contributions of these progenitors to multiple cell lineages. Particularly, understanding the underpinnings of neural crest formation will help to discern the complexities of eye development, as these NCCs are involved in every aspect of this process. In this review, we summarize the role of ocular NCCs in eye development, particularly focusing on congenital eye diseases associated with anterior segment defects and the interplay between three prominent molecules, PITX2, CYP1B1, and retinoic acid, which act in concert to specify a population of neural crest‐derived mesenchymal progenitors for migration and differentiation, to give rise to distinct anterior segment tissues. We also describe recent findings implicating this stem cell population in ocular coloboma formation, and introduce recent evidence suggesting the involvement of NCCs in optic fissure closure and vascular development. Birth Defects Research (Part C) 105:87–95, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
This study was undertaken to investigate the establishment of the scleral cartilage in the chick embryo. Johnston et al. (1974) has demonstrated that most of the cells of the scleral cartilage originate in the cranial neural crest. By means of a series of chorioallantoic grafts of pigmented retina, and its adherent periocular mesenchyme from stage 11 to 25, the present experiments show that the cranial neural crest cells arrive at the eye in sufficient numbers to form cartilage by stage 14. Pigmented retina, denuded of mesenchyme, from stage 16 embryos implanted into the head of stage 13 embryos induces cartilage formation in head mesenchyme. However, neither pigmented retina nor spinal cord could induce cartilage formation in chorioallantoic mesenchyme. Combination grafts of cranial neural crest and presumptive optic vesicle developed neural tissue, pigmented retina, and in some cases sclera-like cartilage. Thus, periorbital mesenchyme, derived largely from cranial neural crest, at about stage 14 develops the scleral cartilage in response to induction by the pigmented retina.  相似文献   

8.
Neural crest cells from brachial levels of the neural tube populate the ventral roots, spinal nerves, and peripheral nerves of the chick forelimb where they give rise to Schwann cells. The distribution of neural crest cells in the developing forelimb was examined using homotopic and heterotopic chick-quail chimeras to label neural crest cells from subsets of the brachial spinal segments. Neural crest cells from particular regions of the spinal cord populated ventral roots and spinal nerves adjacent to or immediately posterior to the graft. Crest cells also populated the brachial plexus in accord with their segmental origins. In the forelimb, neural crest cells populated muscle nerves with anterior brachial spinal segments populating nerves to anterior musculature of the forelimb and posterior brachial spinal segments populating nerves to posterior musculature. Similar patterns were seen following both homotopic and heterotopic transplantation. In both types of grafts, the distribution of neural crest cells largely matched the sensory and motor projection pattern from the same spinal segmental level. This suggests that neural crest-derived Schwann cells from a particular spinal segment may use sensory and motor fibers emerging from the same segmental level as substrates to guide their migration into the periphery.  相似文献   

9.
The pigment cells of the skin are derived from melanoblasts which originate in the neural crest. The dorsoventral migration of melanoblasts has been visualized in pigment stripes seen in aggregation chimeras, and the width of these bands has suggested that the entire pigmentation of the coat is derived from a small number of founder cells. We have generated mosaic mice by marking single melanoblasts in utero to gain information on the clonal history of pigment-forming cells. A retroviral vector carrying the human tyrosinase gene was constructed and microinjected into neurulating albino mouse embryos. Albino mice are devoid of pigmentation due to deficiency of tyrosinase. Thus, transduction of the wild-type gene into the otherwise normal melanoblasts should rescue the mutant phenotype, giving rise to patches of pigmentation, which correspond to the area colonized by the mitotic progeny of a marked clone. Mosaic animals derived from the injected embryos indeed showed pigmented bands with a width strikingly similar to the 'standard' stripes seen in aggregation chimeras. These results are consistent with the notion that the unit width bands seen in aggregation chimeras represent the clonal progeny of a single melanoblast and verify Mintz's (1967) conclusion that a few founder melanoblasts give rise to coat pigmentation. The pigment cells of the eye are of dual origin: the melanocytes in choroid and outer layer of the iris are derived from the neural crest and those in the pigment layer of the retina from the neuroepithelium of the optic cup. Marked clones in both lineages were observed in the eyes of many mosaic animals.  相似文献   

10.
Mice with a targeted deletion of the Hoxa3 gene have defects of derivatives of the third branchial arch and pouch. To address the role of the Hoxa3 gene in parathyroid organogenesis, we examined the third pharyngeal pouch development by immunohistochemistry (IHC) using the secretory protein (SP)-1/chromogranin A antiserum, which recognizes the parathyroid from its initial formation onward. At embryonic day (E) 11.5, the SP-1/chromogranin A-immunoreactive primary rudiment of the parathyroid appeared in the cranial region of the third pharyngeal pouch of wild-type embryos. In Hoxa3-null mutants, the third pharyngeal pouch was normally formed but failed to differentiate into the parathyroid rudiment, showing no immunoreactivity for SP-1/chromogranin A. Classic studies using chick-quail chimeras have demonstrated that the ectomesenchymal neural crest cells are required for proper development of the pharyngeal pouch-derived organs, including the thymus and parathyroid glands. To visualize the migration and development of mesenchymal neural crest cells in Hoxa3 mutants, the heterozygotes were crossed with connexin43-lacZ transgenic mice in which beta-galactosidase expression was specific to the neural crest cells. In Hoxa3 homozygotes and in wild types, ectomesenchymal neural crest cells densely populated the pharyngeal arches, including the third one, and surrounded the third pouch epithelium. These results indicate that lack of the Hoxa3 gene affects the intrinsic ability of the third pharyngeal pouch to form the parathyroid rudiment and has no detectable effect on the migration of neural crest cells.  相似文献   

11.
We used transgenic mice in which the promoter sequence for connexin 43 linked to a lacZ reporter was expressed in neural crest but not myocardial cells to document the pattern of cardiac neural crest cells in the caudal pharyngeal arches and cardiac outflow tract. Expression of lacZ was strikingly similar to that of cardiac neural crest cells in quail-chick chimeras. By using this transgenic mouse line to compare cardiac neural crest involvement in cardiac outflow septation and aortic arch artery development in mouse and chick, we were able to note differences and similarities in their cardiovascular development. Similar to neural crest cells in the chick, lacZ-positive cells formed a sheath around the persisting aortic arch arteries, comprised the aorticopulmonary septation complex, were located at the site of final fusion of the conal cushions, and populated the cardiac ganglia. In quail-chick chimeras generated for this study, neural crest cells entered the outflow tract by two pathways, submyocardially and subendocardially. In the mouse only the subendocardial population of lacZ-positive cells could be seen as the cells entered the outflow tract. In addition lacZ-positive cells completely surrounded the aortic sac prior to septation, while in the chick, neural crest cells were scattered around the aortic sac with the bulk of cells distributed in the bridging portion of the aorticopulmonary septation complex. In the chick, submyocardial populations of neural crest cells assembled on opposite sides of the aortic sac and entered the conotruncal ridges. Even though the aortic sac in the mouse was initially surrounded by lacZ-positive cells, the two outflow vessels that resulted from its septation showed differential lacZ expression. The ascending aorta was invested by lacZ-positive cells while the pulmonary trunk was devoid of lacZ staining. In the chick, both of these vessels were invested by neural crest cells, but the cells arrived secondarily by displacement from the aortic arch arteries during vessel elongation. This may indicate a difference in derivation of the pulmonary trunk in the mouse or a difference in distribution of cardiac neural crest cells. An independent mouse neural crest marker is needed to confirm whether the differences are indeed due to species differences in cardiovascular and/or neural crest development. Nevertheless, with the differences noted, we believe that this mouse model faithfully represents the location of cardiac neural crest cells. The similarities in location of lacZ-expressing cells in the mouse to that of cardiac neural crest cells in the chick suggest that this mouse is a good model for studying mammalian cardiac neural crest and that the mammalian cardiac neural crest performs functions similar to those shown for chick.  相似文献   

12.
Neural crest cells are multipotential cells that delaminate from the dorsal neural tube and migrate widely throughout the body. A subregion of the cranial neural crest originating between the otocyst and somite 3 has been called "cardiac neural crest" because of the importance of these cells in heart development. Much of what we know about the contribution and function of the cardiac neural crest in cardiovascular development has been learned in the chick embryo using quail-chick chimeras to study neural crest migration and derivatives as well as using ablation of premigratory neural crest cells to study their function. These studies show that cardiac neural crest cells are absolutely required to form the aorticopulmonary septum dividing the cardiac arterial pole into systemic and pulmonary circulations. They support the normal development and patterning of derivatives of the caudal pharyngeal arches and pouches, including the great arteries and the thymus, thyroid and parathyroids. Recently, cardiac neural crest cells have been shown to modulate signaling in the pharynx during the lengthening of the outflow tract by the secondary heart field. Most of the genes associated with cardiac neural crest function have been identified using mouse models. These studies show that the neural crest cells may not be the direct cause of abnormal cardiovascular development but they are a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Since, cardiac neural crest cells span from the caudal pharynx into the outflow tract, they are especially susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations as represented by the DiGeorge syndrome will necessarily require understanding development of the cardiac neural crest.  相似文献   

13.
It has been demonstrated that the septation of the outflow tract of the heart is formed by the cardiac neural crest. Ablation of this region of the neural crest prior to its migration from the neural fold results in anomalies of the outflow and inflow tracts of the heart and the aortic arch arteries. The objective of this study was to examine the migration and distribution of these neural crest cells from the pharyngeal arches into the outflow region of the heart during avian embryonic development. Chimeras were constructed in which each region of the premigratory cardiac neural crest from quail embryos was implanted into the corresponding area in chick embryos. The transplantations were done unilaterally on each side and bilaterally. The quail-chick chimeras were sacrificed between Hamburger-Hamilton stages 18 and 25, and the pharyngeal region and outflow tract were examined in serial paraffin sections to determine the distribution pattern of quail cells at each stage. The neural crest cells derived from the presumptive arch 3 and 4 regions of the neuraxis occupied mainly pharyngeal arches 3 and 4 respectively, although minor populations could be seen in pharyngeal arches 2 and 6. The neural crest cells migrating from the presumptive arch 6 region were seen mainly in pharyngeal arch 6, but they also populated pharyngeal arches 3 and 4. Clusters of quail neural crest cells were found in the distal outflow tract at stage 23.  相似文献   

14.
Sensory nerves play a vital role in maintaining corneal transparency. They originate in the trigeminal ganglion, which is derived from two embryonic cell populations (cranial neural crest and ectodermal placode). Nonetheless, it is unclear whether corneal nerves arise from neural crest, from placode, or from both. Quail-chick chimeras and species-specific antibodies allowed tracing quail-derived neural crest or placode cells during trigeminal ganglion and corneal development, and after ablation of either neural crest or placode. Neural crest chimeras showed quail nuclei in the proximal part of the trigeminal ganglion, and quail nerves in the pericorneal nerve ring and in the cornea. In sharp contrast, placode chimeras showed quail nuclei in the distal part of the trigeminal ganglion, but no quail nerves in the cornea or in the pericorneal nerve ring. Quail placode-derived nerves were present, however, in the eyelids. Neural crest ablation between stages 8 and 9 resulted in diminished trigeminal ganglia and absence of corneal innervation. Ablation of placode after stage 11 resulted in loss of the ophthalmic branch of the trigeminal ganglion and reduced corneal innervation. Noninnervated corneas still became transparent. These results indicate for the first time that although both neural crest and placode contribute to the trigeminal ganglion, corneal innervation is entirely neural crest-derived. Nonetheless, proper corneal innervation requires presence of both cell types in the embryonic trigeminal ganglion. Also, complete lack of innervation has no discernible effect on development of corneal transparency or cell densities.  相似文献   

15.
16.
Enteric ganglia in the hindgut are derived from separate vagal and sacral neural crest populations. Two conflicting models, based primarily on avian data, have been proposed to describe the contribution of sacral neural crest cells. One hypothesizes early colonization of the hindgut shortly after neurulation, and the other states that sacral crest cells reside transiently in the extraenteric ganglion of Remak and colonize the hindgut much later, after vagal crest-derived neural precursors arrive. In this study, I show that Wnt1-lacZ-transgene expression, an "early" marker of murine neural crest cells, is inconsistent with the "early-colonization" model. Although Wnt1-lacZ-positive sacral crest cells populate pelvic ganglia in the mesenchyme surrounding the hindgut, they are not found in the gut prior to the arrival of vagal crest cells. Similarly, segments of murine hindgut harvested prior to the arrival of vagal crest cells and grafted under the renal capsule fail to develop enteric neurons, unless adjacent pelvic mesenchyme is included in the graft. When pelvic mesenchyme from DbetaH-nlacZ transgenic embryos is apposed with nontransgenic hindgut, neural precursors from the mesenchyme colonize the hindgut and form intramural ganglion cells that express the transgenic marker. Contribution of sacral crest-derived cells to the enteric nervous system is not affected by cocolonization of grafts by vagal crest-derived neuroglial precursors. The findings complement recent studies of avian chimeras and support an evolutionarily conserved model in which sacral crest cells first colonize the extramural ganglion and secondarily enter the hindgut mesenchyme.  相似文献   

17.
The distribution of the mesencephalic neural crest cells in the mouse embryo was studied by mapping the colonization pattern of WGA-gold labelled cells following specific labelling of the neuroectoderm and grafting of presumptive neural crest cells to orthotopic and heterotopic sites. The result showed that (1) there were concomitant changes in the morphology of the neural crest epithelium during the formation of neural crest cells, in the 4- to 7-somite-stage embryos, (2) the neural crest cells were initially confined to the lateral subectodermal region of the cranial mesenchyme and there was minimal mixing with the paraxial mesoderm underneath the neural plate, (3) labelled cells from the presumptive crest region colonized the lateral cranio-facial mesenchyme, the developing trigeminal ganglion and the pharyngeal arch, (4) the formation of neural crest cells was facilitated by the focal disruption of the basal lamina and the cell-cell interaction specific to the neural crest site and (5) the trigeminal ganglion was colonized not only by neural crest cells but also by cells from the ectodermal placode.  相似文献   

18.
S Miyagawa  M L Kirby 《Teratology》1989,39(3):287-294
Nimustine hydrochloride (ACNU) is a nitrosourea derivative anticancer agent which has been shown to cause persistent truncus arteriosus in chick embryos. The objective of this study was to confirm the teratogenic effects of ACNU on the cardiovascular system of chick embryos and to determine whether ACNU induces persistent truncus arteriosus by interfering with neural crest cells. Various doses of ACNU ranging from 10 to 200 micrograms were injected under the chorioallantoic membrane of chick embryos on the third day of incubation. Saline solution was used as the control. After 10 to 11 days of incubation, 242 (46%) survivors of the 524 treated eggs were obtained. The survival rates of the embryos and the frequencies of cardiovascular anomalies were dose dependent. Of 146 embryos with cardiovascular anomalies, 104 (71%) had persistent truncus arteriosus. Ventricular septal defect and double-outlet right ventricle were seen in 37 (25%) and one (1%), respectively. Aortic arch anomalies were seen in 116 embryos (79%). Quail-chick chimeras (chick embryos with quail cardiac neural crest) were treated with 50 micrograms of ACNU and examined histologically 24 hours later. These chimeras showed dying neural crest cells in the pharyngeal arches. Dying cells were also noted in the neural tube, cranial ganglia, retina, and otocyst. These results suggest that persistent truncus arteriosus in chick embryos treated with ACNU is induced by neural crest cell death.  相似文献   

19.
To identify molecular and cellular mechanisms that determine when bone forms, and to elucidate the role played by osteogenic mesenchyme, we employed an avian chimeric system that draws upon the divergent embryonic maturation rates of quail and duck. Pre-migratory neural crest mesenchyme destined to form bone in the mandible was transplanted from quail to duck. In resulting chimeras, quail donor mesenchyme established significantly faster molecular and histological programs for osteogenesis within the relatively slower-progressing duck host environment. To understand this phenotype, we assayed for changes in the timing of epithelial-mesenchymal interactions required for bone formation and found that such interactions were accelerated in chimeras. In situ hybridization analyses uncovered donor-dependent changes in the spatiotemporal expression of genes, including the osteo-inductive growth factor Bmp4. Mesenchymal expression of Bmp4 correlated with an ability of quail donor cells to form bone precociously without duck host epithelium, and also relied upon epithelial interactions until mesenchyme could form bone independently. Treating control mandibles with exogenous BMP4 recapitulated the capacity of chimeras to express molecular mediators of osteogenesis prematurely and led to the early differentiation of bone. Inhibiting BMP signaling delayed bone formation in a stage-dependent manner that was accelerated in chimeras. Thus, mandibular mesenchyme dictates when bone forms by temporally regulating its interactions with epithelium and its own expression of Bmp4. Our findings offer a developmental mechanism to explain how neural crest-derived mesenchyme and BMP signaling underlie the evolution of species-specific skeletal morphology.  相似文献   

20.
Cardiac neural crest cells migrate into the pharyngeal arches where they support development of the pharyngeal arch arteries. The pharyngeal endoderm and ectoderm both express high levels of FGF8. We hypothesized that FGF8 is chemotactic for cardiac crest cells. To begin testing this hypothesis, cardiac crest was explanted for migration assays under various conditions. Cardiac neural crest cells migrated more in response to FGF8. Single cell tracing indicated that this was not due to proliferation and subsequent transwell assays showed that the cells migrate toward an FGF8 source. The migratory response was mediated by FGF receptors (FGFR) 1 and 3 and MAPK/ERK intracellular signaling. To test whether FGF8 is chemokinetic and/or chemotactic in vivo, dominant negative FGFR1 was electroporated into the premigratory cardiac neural crest. Cells expressing the dominant negative receptor migrated slower than normal cardiac neural crest cells and were prone to remain in the vicinity of the neural tube and die. Treating with the FGFR1 inhibitor, SU5402 or an FGFR3 function-blocking antibody also slowed neural crest migration. FGF8 over-signaling enhanced neural crest migration. Neural crest cells migrated to an FGF8-soaked bead placed dorsal to the pharynx. Finally, an FGF8 producing plasmid was electroporated into an ectopic site in the ventral pharyngeal endoderm. The FGF8 producing cells attracted a thick layer of mesenchymal cells. DiI labeling of the neural crest as well as quail-to-chick neural crest chimeras showed that neural crest cells migrated to and around the ectopic site of FGF8 expression. These results showing that FGF8 is chemotactic and chemokinetic for cardiac neural crest adds another dimension to understanding the relationship of FGF8 and cardiac neural crest in cardiovascular defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号