首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Previous experiments have identified an element in the adenovirus E4 promoter that is critical for E1A-dependent trans activation and that can confer inducibility to a heterologous promoter. This DNA element is a recognition site for multiple nuclear factors, including ATF, which is likely a family of DNA-binding factors with similar DNA recognition properties. However, ATF activity was found not to be altered in any demonstrable way as a result of adenovirus infection. In contrast, another factor that recognizes this element, termed E4F, was found at only very low levels in uninfected cells but was increased markedly upon adenovirus infection, as measured in DNA-binding assays. Although both the ATF activity and the E4F activity recognized and bound to the same two sites in the E4 promoter, they differed in their sequence recognition of these sites. Furthermore, E4F bound only to a small subset of the ATF recognition sites; for instance, E4F did not recognize the ATF sites in the E2 or E3 promoters. Various E4F and ATF binding sites were inserted into an expression vector and tested by cotransfection assays for responsiveness to E1A. We found that a sequence capable of binding E4F could confer E1A inducibility. In contrast, a sequence that could bind ATF but not E4F did not confer E1A inducibility. We also found that E4F formed a stable complex with the E4 promoter, whereas the ATF DNA complex was unstable and rapidly dissociated. We conclude that the DNA-binding specificity of E4F as well as the alterations in DNA-binding activity of E4F closely correlates with E1A stimulation of the E4 promoter.  相似文献   

11.
12.
13.
14.
15.
16.
17.
4-hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX-2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE(2)) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL-1beta-induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (-58/-53) is essential for HNE-induced COX-2 promoter activation and indeed HNE induced ATF-2 and CREB-1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE-induced ATF/CRE luciferase reporter plasmid activation, COX-2 synthesis and promoter activity. HNE abrogated IL-1beta-induced iNOS expression and promoter activity mainly through NF-kappaB site (-5,817/-5,808) possibly via suppression of IKKalpha-induced IkappaBalpha phosphorylation and NF-kappaB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKalpha was inactivated through HNE/IKKalpha adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX-2 and iNOS in OA. The aldehyde induced selectively COX-2 expression via ATF/CRE activation and inhibited iNOS via IKKalpha inactivation.  相似文献   

18.
19.
Epidermal growth factor induction of c-jun expression requires ATF1 and MEF2 sites in the c-jun promoter. We find that activation of the c-jun promoter through the ATF1 site requires phosphorylation of ATF1 at serine 63. A serine 63 to alanine mutation of ATF1 acts to block epidermal growth factor (EGF) induction of a transfected c-jun gene. ATF1 can be phosphorylated by mitogen- and stress-activated protein kinase 1 (MSK1), which is activated by EGF and ERK1/2. Kinase-dead MSK1 mutants blocked EGF induction of a transfected c-jun gene suggesting that MSK1 or a similar family member is required for induced c-jun expression. Use of the MEK1 inhibitor U0126 and dominant negative MEK1 further showed that MSK1 activation and c-jun induction require the ERK pathway. In contrast, a JNK inhibitor blocked EGF induction of c-jun expression but not ATF1 phosphorylation. These results show that the two MAPK pathways, ERK and JNK, are required for EGF-induced c-jun expression and that the ERK pathway acts through downstream phosphorylation of ATF1.  相似文献   

20.
p53 is an important player in the cellular response to genotoxic stress whose functions are regulated by phosphorylation of a number of serine and threonine residues. Phosphorylation of p53 influences its DNA-binding and gene regulation activities. This study examines p53 phosphorylation in HCT-116 (MMR-deficient) and HCT-116+ch3 (MMR-proficient) human colon cancer cells treated with a S(N)2 DNA-alkylating agent, methylmethane sulfonate (MMS). MMS induces phosphorylation of p53 on Ser15 and Ser392 in a dose- and time-dependent manner. MMS-induced p53 phosphorylation is independent of DNA mismatch repair (MMR) activity. Nuclear extracts from MMS-treated HCT-116 cells had higher p21WAF1/Cip1 (p21) promoter DNA-binding activity in vitro opposed to untreated cells. After MMS treatment, the activation of the cloned p21 promoter in a transient transfection assay and endogenous p21 mRNA levels in HCT-116(p53+/+) versus HCT-116(p53-/-) cells increased, which correlates with an increased levels of phospho-p53(Ser15) and phospho-p53(Ser392). These results suggest that SN2 DNA-alkylating agent-induced phosphorylation of p53 on Ser15 and Ser392 increases its DNA-binding properties to cause an increased expression of p21 that may play a role in cell cycle arrest and/or apoptosis of HCT-116 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号