首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
beta-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. beta-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. beta-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of beta-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 microM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both beta-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed.  相似文献   

2.
Wu CT  Bradford KJ 《Plant physiology》2003,133(1):263-273
Class I chitinase (Chi9) and beta-1,3-glucanase (GluB) genes are expressed in the micropylar endosperm cap of tomato (Lycopersicon esculentum) seeds just before radicle emergence through this tissue to complete germination. In gibberellin (GA)-deficient mutant (gib-1) seeds, expression of Chi9 and GluB mRNA and protein is dependent upon GA. However, as expression occurs relatively late in the germination process, we investigated whether the genes are induced indirectly in response to tissue wounding associated with endosperm cap weakening and radicle protrusion. Wounding and methyl jasmonate (MeJA) induced Chi9 expression, whereas ethylene, abscisic acid, sodium salicylate, fusicoccin, or beta-aminobutyric acid were without effect. Chi9 expression occurred only in the micropylar tissues when seeds were exposed to MeJA or were wounded at the chalazal end of the seed. Expression of Chi9, but not GluB, mRNA was reduced in germinating seeds of the jasmonate-deficient defenseless1 tomato mutant and could be restored by MeJA treatment. Chi9 expression during germination may be associated with "wounding" from cell wall hydrolysis and weakening in the endosperm cap leading to radicle protrusion, and jasmonate is involved in the signaling pathway for this response. Among these treatments and chemicals (other than GA), only MeJA and wounding induced a low level of GluB expression in gib-1 seeds. However, MeJA, wounding, and particularly ethylene induced both genes in leaves, whereas GA induced only Chi9 in leaves. Although normally expressed simultaneously during tomato seed germination, Chi9 and GluB genes are regulated distinctly and tissue specifically by hormones and wounding.  相似文献   

3.
Expansins are plant proteins that can induce extension of isolated cell walls and are proposed to mediate cell expansion. Three expansin genes were expressed in germinating tomato (Lycopersicon esculentum Mill.) seeds, one of which (LeEXP4) was expressed specifically in the endosperm cap tissue enclosing the radicle tip. The other two genes (LeEXP8 and LeEXP10) were expressed in the embryo and are further characterized here. LeEXP8 mRNA was not detected in developing or mature seeds but accumulated specifically in the radicle cortex during and after germination. In contrast, LeEXP10 mRNA was abundant at an early stage of seed development corresponding to the period of rapid embryo expansion; it then decreased during seed maturation and increased again during germination. When gibberellin-deficient (gib-1) mutant seeds were imbibed in water, LeEXP8 mRNA was not detected, but a low level of LeEXP10 mRNA was present. Expression of both genes increased when gib-1 seeds were imbibed in gibberellin. Abscisic acid did not prevent the initial expression of LeEXP8 and LeEXP10, but mRNA abundance of both genes subsequently decreased during extended incubation. The initial increase in LeEXP8, but not LeEXP10, mRNA accumulation was blocked by low water potential, but LeEXP10 mRNA amounts fell after longer incubation. When seeds were transferred from abscisic acid or low water potential solutions to water, abundance of both LeEXP8 and LeEXP10 mRNAs increased in association with germination. The tissue localization and expression patterns of both LeEXP8 and LeEXP10 suggest developmentally specific roles during embryo and seedling growth.  相似文献   

4.
Xyloglucan endotransglycosylases (XETs) modify xyloglucans, major components of primary cell walls in dicots. A cDNA encoding an XET (LeXET4) was isolated from a germinating tomato (Lycopersicon esculentum Mill.) seed cDNA library. DNA gel blot analysis showed that LeXET4 is a single-copy gene in the tomato genome. LeXET4 mRNA was strongly expressed in germinating seeds, was much less abundant in stems, and was not detected in roots, leaves or flower tissues. During germination, LeXET4 mRNA was detected in seeds within 12 h of imbibition with maximum mRNA abundance at 24 h. Tissue prints showed that LeXET4 mRNA was localized exclusively to the endosperm cap region. Expression of LeXET4 was dependent on exogenous gibberellin (GA) in GA-deficient (gib-1 mutant) tomato seeds, while abscisic acid, a seed germination inhibitor, had no effect on LeXET4 mRNA expression in wild-type seeds. LeXET4 mRNA disappeared after radicle emergence, even though degradation of the lateral endosperm cell walls continued. The temporal, spatial and hormonal regulation pattern of LeXET4 gene expression suggests that XET has a role in endosperm cap weakening, a key process regulating tomato seed germination.  相似文献   

5.
Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA(4+7). Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V(0) membrane sector of vacuolar H(+)-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V(1) sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds.  相似文献   

6.
Endo-beta-mannanase (EC 3.2.1.78) is involved in hydrolysis of the mannan-rich cell walls of the tomato (Lycopersicon esculentum Mill.) endosperm during germination and post-germinative seedling growth. Different electrophoretic isoforms of endo-beta-mannanase are expressed sequentially in different parts of the endosperm, initially in the micropylar endosperm cap covering the radicle tip and subsequently in the remaining lateral endosperm surrounding the rest of the embryo. We have isolated a cDNA from imbibed tomato seeds (LeMAN2) that shares 77% deduced amino acid sequence similarity with a post-germinative tomato mannanase (LeMAN1). When expressed in Escherichia coli, the protein encoded by LeMAN2 cDNA was recognized by anti-mannanase antibody and exhibited endo-beta-mannanase activity, confirming the identity of the gene. LeMAN2 was expressed exclusively in the endosperm cap tissue of tomato seeds prior to radicle emergence, whereas LeMAN1 was expressed only in the lateral endosperm after radicle emergence. LeMAN2 mRNA accumulation and mannanase activity were induced by gibberellin in gibberellin-deficient gib-1 mutant seeds but were not inhibited by abscisic acid in wild-type seeds. Distinct mannanases are involved in germination and post-germinative growth, with LeMAN2 being associated with endosperm cap weakening prior to radicle emergence, whereas LeMAN1 mobilizes galactomannan reserves in the lateral endosperm.  相似文献   

7.
Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA4+7. Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V0 membrane sector of vacuolar H+-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V1 sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds.  相似文献   

8.
9.
The endosperm tissue enclosing the radicle tip (endosperm cap) governs radicle emergence in tomato (Lycopersicon esculentum Mill.) seeds. Weakening of the endosperm cap has been attributed to hydrolysis of its mannan-rich cell walls by endo-[beta]-D-mannanase. To test this hypothesis, we measured mannanase activity in tomato endosperm caps from seeds allowed to imbibe under conditions of varying germination rates. Over a range of suboptimal temperatures, mannanase activity prior to radicle emergence increased in accordance with accumulated thermal time. Reduced water potential delayed or prevented radicle emergence but enhanced mannanase activity in the endosperm caps. Abscisic acid did not prevent the initial increase in mannanase activity, although radicle emergence was markedly delayed. Sugar composition and percent mannose (Man) content of endosperm cap cell walls did not change prior to radicle emergence under any condition. Man, glucose, and other sugars were released into the incubation solution by endosperm caps isolated from intact seeds during imbibition. Pregerminative release of Man was suppressed and the release of glucose was enhanced when seeds were incubated in osmoticum or abscisic acid; the opposite occurred in the presence of gibberellin. Thus, whereas sugar release patterns were sensitive to environmental and hormonal factors affecting germination, neither assayable endo-[beta]-D-mannanase activity nor changes in cell wall sugar composition of endosperm caps correlated well with tomato seed germination rates under all conditions.  相似文献   

10.
Ni BR  Bradford KJ 《Plant physiology》1993,101(2):607-617
Germination responses of wild-type (MM), abscisic acid (ABA)-deficient (sitw), and gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds to ABA, GA4+7, reduced water potential ([psi]), and their combinations were analyzed using a population-based threshold model (B.R. Ni and K.J. Bradford [1992] Plant Physiol 98: 1057-1068). Among the three genotypes, sitw seeds germinated rapidly and completely in water, MM seeds germinated more slowly and were partially dormant, and gib-1 seeds did not germinate without exogenous GA4+7. Times to germination were inversely proportional to the differences between the external osmoticum, ABA, or GA4+7 concentrations and the corresponding threshold levels that would either prevent ([psi]b, log[ABAb]) or promote (log[GAb]) germination. The sensitivity of germination to ABA, GA4+7, and [psi] varied widely among individual seeds in the population, resulting in a distribution of germination times. The rapid germination rate of sitw seeds was attributable to their low mean [psi]b (-1.17 MPa). Postharvest dormancy in MM seeds was due to a high mean [psi]b (-0.35 MPa) and a distribution of [psi]b among seeds such that some seeds were unable to germinate even on water. GA4+7 (100 [mu]M) stimulated germination of MM and gib-1 seeds by lowering the mean [psi]b to -0.75 MPa, whereas ABA inhibited germination of MM and sitw seeds by increasing the mean [psi]b. The changes in [psi]b were not due to changes in embryo osmotic potential. Rather, hormonal effects on endosperm weakening opposite the radicle tip apparently determine the threshold [psi] for germination. The analysis demonstrates that ABA- and GA-dependent changes in seed dormancy and germination rates, whether due to endogenous or exogenous growth regulators, are based primarily upon corresponding shifts in the [psi] thresholds for radicle emergence. The [psi] thresholds, in turn, determine both the rate and final extent of germination within the seed population.  相似文献   

11.
12.
The mechanism of inhibition of coffee (Coffea arabica cv. Rubi) seed germination by exogenous gibberellins (GAs) and the requirement of germination for endogenous GA were studied. Exogenous GA(4+7) inhibited coffee seed germination. The response to GA(4+7) showed two sensitivity thresholds: a lower one between 0 and 1 microM and a higher one between 10 and 100 microM. However, radicle protrusion in coffee seed depended on the de novo synthesis of GAs. Endogenous GAs were required for embryo cell elongation and endosperm cap weakening. Incubation of coffee seed in exogenous GA(4+7) led to loss of embryo viability and dead cells were observed by low temperature scanning microscopy only when the endosperm was surrounding the embryo. The results described here indicate that the inhibition of germination by exogenous GAs is caused by factors that are released from the endosperm during or after its weakening, causing cell death in the embryo and leading to inhibition of radicle protrusion.  相似文献   

13.
14.
Endo-[beta]-mannanase is hypothesized to be a rate-limiting enzyme in endosperm weakening, which is a prerequisite for radicle emergence from tomato (Lycopersicon esculentum Mill.) seeds. Using a sensitive, single-seed assay, we have measured mannanase activity diffusing from excised tomato endosperm caps following treatments that alter the rate or percentage of radicle emergence. Most striking was the 100- to more than 10,000-fold range of mannanase activity detected among individual seeds of highly inbred tomato lines, which would not be detected in pooled samples. In some cases a threshold-type relationship between mannanase activity and radicle emergence was observed. However, when radicle emergence was delayed or prevented by osmoticum or abscisic acid, the initial increase in mannanase activity was unaffected or even enhanced. Partially dormant seed lots displayed a bimodal distribution of activity, with low activity apparently associated with dormant seeds in the population. Gibberellin- and abscisic acid-deficient mutant seeds exhibited a wide range of mannanase activity, consistent with their variation in hormonal sensitivity. Although the presence of mannanase activity in the endosperm cap is consistently associated with radicle emergence, it is not the sole or limiting factor under all conditions.  相似文献   

15.
The micropylar region of endosperm in a seed, which is adjacent to the radicle tip, is called the 'endosperm cap', and is specifically activated before radicle emergence. This activation of the endosperm cap is a widespread phenomenon among species and is a prerequisite for the completion of germination. To understand the mechanisms of endosperm cap-specific gene expression in tomato seeds, GeneChip analysis was performed. The major groups of endosperm cap-enriched genes were pathogenesis-, cell wall-, and hormone-associated genes. The promoter regions of endosperm cap-enriched genes contained DNA motifs recognized by ethylene response factors (ERFs). The tomato ERF1 (TERF1) and its experimentally verified targets were enriched in the endosperm cap, suggesting an involvement of the ethylene response cascade in this process. The known endosperm cap enzyme endo-β-mannanase is induced by gibberellin (GA), which is thought to be the major hormone inducing endosperm cap-specific genes. The mechanism of endo-β-mannanase induction by GA was also investigated using isolated, embryoless seeds. Results suggested that GA might act indirectly on the endosperm cap. We propose that endosperm cap activation is caused by the ethylene response of this tissue, as a consequence of mechanosensing of the increase in embryonic growth potential by GA action.  相似文献   

16.
17.
18.
BACKGROUND AND AIMS: Solanaceae seed morphology and physiology have been widely studied but mainly in domesticated crops. The present study aimed to compare the seed morphology and the physiology of germination of Solanum lycocarpum, an important species native to the Brazilian Cerrado, with two species with endospermic seeds, tomato and coffee. METHODS: Morphological parameters of fruits and seeds were determined by microscopy. Germination was monitored for 40 d under different temperature regimes. Endosperm digestion and resistance, with endo-beta-mannanase activity and required force to puncture the endosperm cap as respective markers, were measured during germination in water and in abscisic acid. KEY RESULTS: Fruits of S. lycocarpum contain dormant seeds before natural dispersion. The best germination condition found was a 12-h alternating light/dark and high/low (20/30 degrees C) temperature cycle, which seemed to target properties of the endosperm cap. The endosperm cap contains 7-8 layers of elongated polygonal cells and is predestined to facilitate radicle protrusion. The force required to puncture the endosperm cap decreased in two stages during germination and showed a significant negative correlation with endo-beta-mannanase activity. As a result of the thick endosperm cap, the puncture force was significantly higher in S. lycocarpum than in tomato and coffee. Endo-beta-mannanase activity was detected in the endosperm cap prior to radicle protrusion. Abscisic acid inhibited germination, increase of embryo weight during imbibition, the second stage of weakening of the endosperm cap and of endo-beta-mannanase activity in the endosperm cap. CONCLUSIONS: The germination mechanism of S. lycocarpum bears resemblance to that of tomato and coffee seeds. However, quantitative differences were observed in embryo pressure potential, endo-beta-mannanase activity and endosperm cap resistance that were related to germination rates across the three species.  相似文献   

19.
Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that ·OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By 3H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic ·OH in radicles and endosperm caps: the production and action of ·OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of ·OH attack on polysaccharides were evident. In vivo ·OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by ·OH is a controlled action of this type of reactive oxygen species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号