首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the atomic force microscope (AFM) has contributed much to our understanding of the molecular forces involved in various high-affinity receptor-ligand systems. However, a universal anchor system for such measurements is still required. This would open up new possibilities for the study of biological recognition processes and for the establishment of high-throughput screening applications. One such candidate is the N-nitrilo-triacetic acid (NTA)/His-tag system, which is widely used in molecular biology to isolate and purify histidine-tagged fusion proteins. Here the histidine tag acts as a high-affinity recognition site for the NTA chelator. Accordingly, we have investigated the possibility of using this approach in single-molecule force measurements. Using a histidine-peptide as a model system, we have determined the binding force for various metal ions. At a loading rate of 0.5 microm/s, the determined forces varied from 22 +/- 4 to 58 +/- 5 pN. Most importantly, no interaction was detected for Ca(2+) and Mg(2+) up to concentrations of 10 mM. Furthermore, EDTA and a metal ion reloading step demonstrated the reversibility of the approach. Here the molecular interactions were turned off (EDTA) and on (metal reloading) in a switch-like fashion. Our results show that the NTA/His-tag system will expand the "molecular toolboxes" with which receptor-ligand systems can be investigated at the single-molecule level.  相似文献   

2.
Crystalline bacterial cell surface layers (S-layers) show the ability to recrystallize into highly regular pattern on solid supports. In this study, the genetically modified S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177, carrying a hexa-histidine tag (His6-tag) at the C-terminus, was used to generate functionalized two-dimensional nanoarrays on a silicon surface. Atomic force microscopy (AFM) was applied to explore the topography and the functionality of the fused His6-tags. The accessibility of the His6-tags was demonstrated by in-situ anti-His-tag antibody binding to the functional S-layer array. The metal binding properties of the His6-tag was investigated by single molecule force microscopy. For this purpose, newly developed tris–NTA was tethered to the AFM tips via a flexible polyethylene glycol (PEG) linker. The functionalized tips showed specific interactions with S-layer containing His6-tags in the presence of nickel ions. Thus the His6-tag is located at the outer surface of the S-layer and can be used for stable but reversible attachment of functional tris–NTA derivatives.  相似文献   

3.
Protein-carbohydrate interactions are involved in diverse regulatory processes. To help understand the mechanics and kinetics of dissociation of receptor-ligand complexes, we have analyzed the separation of lactose and the N-glycan chains of asialofetuin (ASF) from three lectins and an immunoglobulin G fraction by surface plasmon resonance at zero force and by atomic force microscopy with variations of the external force. While the (AB)2 agglutinins from Ricinus communis (RCA) and Viscum album (VAA) show structural homology, the homodimeric galectin-1 from bovine heart (BHL) has no similarity to the two plant lectins except for sharing this monosaccharide specificity. The beta-galactoside-binding immunoglobulin G (IgG) fraction from human serum provides a further model system with distinct binding-site architecture. The k(off) constants for the two plant agglutinins were independent of the nature of the ligand at 1.1-1.3 x 10(-3) s(-1), whereas the geometry of ligand and binding site presentation affected this parameter for BHL (0.5 x 10(-3) s(-1) for lactose and 1 x 10(-3) s(-1) for ASF) and IgG (1.3 x 10(-3) s(-1) for lactose and 0.55 x 10(-3) s(-1) for ASF). When assessing comparatively the rupture forces at a loading rate of 3 nN/s with lactose as ligand, 34 +/- 6 pN (BHL), 36 +/- 4 pN (IgG), 47 +/- 7 pN (VAA), and 58 +/- 9 pN (RCA) were measured. For the same loading rate the rupture forces for the receptor-ASF interactions were found to be 37 +/- 3 pN (BHL), 43 +/- 5 pN (VAA), 45 +/- 6 pN (IgG), and 65 +/- 9 pN (RCA). The variation of the pulling velocity revealed in all cases a linear dependence between the rupture force and the natural logarithm of the loading rate. Performing probability density and Monte Carlo calculations, the potential barrier widths, which determine the inverse dynamic dependence with the rate of force elevation, increased from 4 A (RCA) and 7 A (VAA and IgG) to 10 A (BHL) for the receptor-lactose interactions. Presenting ASF as ligand potential widths of 4 A for RCA and IgG and 6 A for VAA and BHL were obtained. Since the dissociation kinetics at zero force apparently cannot predict the behavior in force-driven experiments, these results reveal new insights into biological functions. The dissociation kinetics under force helps to explain the difference in the toxic potency of VAA and RCA and points to a function of the galectin in cis-crosslinking and in transient trans-bridging.  相似文献   

4.
Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 μm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds ≥100 μm/s with minimal viscous drag effects. We have used FLUENT®, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates ≥106 pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.  相似文献   

5.
6.
Because of its piconewton force sensitivity and nanometer positional accuracy, the atomic force microscope (AFM) has emerged as a powerful tool for exploring the forces and the dynamics of the interaction between individual ligands and receptors, either on isolated molecules or on cellular surfaces. These studies require attaching specific biomolecules or cells on AFM tips and on solid supports and measuring the unbinding forces between the modified surfaces using AFM force spectroscopy. In this review, we describe the current methodology for molecular recognition studies using the AFM, with an emphasis on strategies available for preparing AFM tips and samples, and on procedures for detecting and localizing single molecular recognition events.  相似文献   

7.
Sequence-dependent mechanics of single DNA molecules   总被引:18,自引:0,他引:18  
Atomic force microscope-based single-molecule force spectroscopy was employed to measure sequence-dependent mechanical properties of DNA by stretching individual DNA double strands attached between a gold surface and an AFM tip. We discovered that in lambda-phage DNA the previously reported B-S transition, where 'S' represents an overstretched conformation, at 65 pN is followed by a nonequilibrium melting transition at 150 pN. During this transition the DNA is split into single strands that fully recombine upon relaxation. The sequence dependence was investigated in comparative studies with poly(dG-dC) and poly(dA-dT) DNA. Both the B-S and the melting transition occur at significantly lower forces in poly(dA-dT) compared to poly(dG-dC). We made use of the melting transition to prepare single poly(dG-dC) and poly(dA-dT) DNA strands that upon relaxation reannealed into hairpins as a result of their self-complementary sequence. The unzipping of these hairpins directly revealed the base pair-unbinding forces for G-C to be 20 +/- 3 pN and for A-T to be 9 +/- 3 pN.  相似文献   

8.
Hydrodynamic effects in fast AFM single-molecule force measurements   总被引:1,自引:0,他引:1  
Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor–ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few m/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 m/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 m/s pulling speed.Abbrevations AFM atomic force micrcoscopy - pN piconewton - BR bacteriorhodopsin - DFS dynamic force spectroscopy - Ig27 immunoglobulin 27 - If27-8 immunoglobulin 27 octameric construct - BFP biomembrane force probe  相似文献   

9.
Using atomic force microscopy (AFM) we performed dynamic force measurements of the adhesive forces in two model systems: avidin-biotin and streptavidin-biotin. In our experiments we used glutaraldehyde for immobilization of (strept)avidin on the tip and biotin on the sample surface. Such interface layers are more rigid than those usually reported in the literature for AFM studies, when (strept)avidin is coupled with biotinylated bovine albumin and biotin with agarose polymers. We determined the dependence of the rupture forces of avidin-biotin and streptavidin-biotin bonds in the range 300-9600 pN/s. The slope of a semilogarithmic plot of this relation changes at about 1700 pN/s. The existence of two different regimes indicates the presence of two activation barriers of these complexes during the dissociation process. The dissociation rates and activation energy barriers, calculated from the Bell model, for the avidin-biotin and streptavidin-biotin interactions are similar to each other for loading rates > 1700 pN/s but they are different from each other for loading rates < 1700 pN/s. In the latter case, the dissociation rates show a higher stability of the avidin-biotin complex than the streptavidin-biotin complex due to a larger outer activation barrier of 0.8 k(B)T. The bond-rupture force is about 20 pN higher for the avidin-biotin pair than for the streptavidin-biotin pair for loading rates < 1700 pN/s. These two experimental observations are in agreement with the known structural differences between the biotin binding pocket of avidin and of streptavidin.  相似文献   

10.
The unbinding force of Zif268-DNA complex has been studied by atomic force microscopy (AFM). DNA and Zif268 were covalently immobilized on the surfaces of an AFM tip and glass substrate, respectively. Confocal microscopy was used to confirm the successful immobilization of DNA. Because of the complexity of the protein-DNA interaction, parallel experiments were designed to discriminate specific interactions. For such experiments, a typical unbinding force of a single Zif268-DNA complex (approx 550 pN at 40 nN/s force loading rate) was evaluated.  相似文献   

11.
The extension of 1-6 polysaccharides has been studied in a series of recent single molecule AFM experiments. For dextran, a key finding was the existence of a plateau in the force-extension curve at forces between 700 and 1000 pN. We studied the extension of the dextran 10-mer under constant force using atomistic simulation with various force fields. All the force fields reproduce the experimental plateau on the force-extension curve. With AMBER94 and AMBER-GLYCAM04 force fields the plateau can be explained by a transition of the glucopyranose rings in the dextran monomers from the chair ((4)C(1)) to the inverted chair ((1)C(4)) conformation while other processes occur at smaller (rotation around C5-C6 bond) or higher (chairs to boat transitions) forces. The CHARMM force field provides a different picture which associates the occurrence of the plateau to chair-boat transitions of the glucopyranose rings.  相似文献   

12.
We used atomic force microscopy (AFM) to measure the unbinding force between antigen coupled to an AFM tip and antibody coated on the substrate surface. Dynamic responses of glucagon/anti-glucagon pairs with multiple pull-off steps to pH and pulling velocity were studied by AFM. Force-distance curves of a specific glucagon-anti-glucagon interaction system with mono-, di-, and multi-unbinding events were recorded, which may be attributed to a single, sequential or multiple breaking of interacting bond(s) between glucagon and anti-glucagon. We studied the dynamic response of glucagon-anti-glucagon pairs to various pulling velocities (16.7-166.7 nm/s). It was found that the mean value of the unbinding force was shifted toward higher values with increasing pulling velocity at each pH. This indicates that the friction force between glucagon and anti-glucagon may contribute to the unbinding force. Moreover, the dynamic response of glucagon-anti-glucagon pairs to pH (4-10) with different pulling velocities was studied. Within the acid range, the bond strength between the glucagon/anti-glucagon complex showed a rapid increase from pH 4 to 7 and reached a maximum (256.4+/-48.9 pN at 166.7 nm/s) at neutrality, followed by a sharp decrease with increasing pH (pH 7-10). This could be attributed to the conformational change that occurred in glucagon when the pH value in solution was varied from the reference level at neutrality. This study demonstrated that the pH dependence of multiple antigen-antibody bond-rupture forces could be measured by a force-based AFM biosensor. Unraveling the relationship between inter-molecular force and intra-molecular conformational change in acid, neutral, and alkaline environments may provide new directions for future application of force measurements by AFM in proteomics or in the development of a clinical cantilever-based mechanical biosensor.  相似文献   

13.
Summary Atomic force microscopy (AFM) was used to measure the morphology and physicochemical properties of rhizobia and to probe cell-surface polymers with tips modified with soybean agglutinin (SBA). AFM measurements of the length, width, and height of Sinorhizobium fredii CCRC15769 were 1580±450, 870±70, and 270±50 nm, respectively (means±SD). Different AFM image modes revealed the morphology, adhesion, viscoelasticity, and surface roughness of rhizobia in air using the tapping operation. Force–distance relationships between SBA-terminated AFM probes and Bradyrhizobium japonicum USDA110 were recorded and the retraction curves showed an unbinding force of 106±48 pN with a loading rate of 1 nN/s in PBS containing 0.1 mM Mn2+ and 0.1 mM Ca2+ (pH 7.2). The technique of AFM provides information about the morphology and molecular interaction forces of rhizobia under physiological conditions.  相似文献   

14.
Protein nanoarrays containing integrin alphavbeta3 or BSA were fabricated on ProLinker-coated Au surface by dip-pen nanolithography (DPN). An atomic force microscope (AFM) tip coated with ProLinker was modified by vitronectin. We measured the interaction force between nanoarrayed integrin alphavbeta3 or BSA and immobilized vitronectin on the cantilever tip by employing tethering-unbinding method. The unbinding force between integrin alphavbeta3 and vitronectin (1087+/-62 pN) was much higher than that of between BSA and vitronectin (643+/-74 pN). These results demonstrate that one can distinguish a specific protein interaction from non-specific interactions by means of force measurement on the molecular interactions between the nanoarrayed protein and its interacting protein on the AFM tip.  相似文献   

15.
High-affinity nitrilotriacetic acids (NTA) have great potential in the molecular manipulation of His-tagged proteins. We have developed a facile method to synthesize multivalent NTA and its conjugates. Starting with appropriately protected lysine, we synthesized the mono-NTA synthons functionalized with either an amino group or a carboxylic group. We then obtained tri-NTA through the condensation of the amino NTA and the carboxylic NTA. Using amino tri-NTA as the key intermediate, we synthesized a series of tri-NTA conjugates with a variety of functional units including biotin, dialkyl, fluorescein, and a hydroxybenzimidate moiety. The biotin-tri-NTA was employed to convert a Biacore streptavidin chip into a high-affinity tri-NTA chip. The equilibrium dissociation constants of tri-NTA/His-tagged protein complexes measured by surface plasmon resonance are in the 20 nM range. Histidine(6)-tagged yeast cytosine deaminase (His6-yCD) was incorporated onto the liposome surface by the lipid-tri-NTA conjugate without any activity loss. Fluorescein-tri-NTA formed a stable 1:1 complex with His6-yCD without significant fluorescence quenching. Specific tri-NTA derivatives for the radiolabeling and coupling of two His-tagged proteins to each other are described. Thus, we have added to the toolbox a number of high-affinity tri-NTA adaptors for the manipulation of His-tagged molecules.  相似文献   

16.
Functionalized atomic force microscope tips were used to sense specific forces of interaction between ligand—receptor pairs and to map the positions of polysaccharides on a living microbial cell surface. Gold-coated tips were functionalized with concanavalin A using a cross-linker with a spacer arm of 15.6Å. It was possible to measure the binding force between concanavalin A and mannan polymers on the yeast (Saccharomyces cerevisiae) cell surface. This force ranged from 75 to 200pN. The shape of the force curve indicated that the polymers were pulled away from the cell surface for a fairly long distance that sometimes reached several hundred nanometres. The distribution of mannan on the cell surface was mapped by carrying out the force measurement in the force volume mode of atomic force microscopy (AFM). During the measurement, the maximum cantilever deflection after contact between the tip and the sample was kept constant at 10nm using trigger mode to keep the pressing force on the sample surface as gently as possible at a force of 180pN. This regime was used to minimize the non-specific adhesion between the tip and the cell surface. Specific molecular recognition events took place on specific areas of the cell surface that could be interpreted as reflecting a non-uniform distribution of mannan on the cell surface.  相似文献   

17.
Using the manipulation force microscope, a novel atomic force microscope, the adhesion forces of bovine serum albumin, myoglobin, ferritin, and lysozyme proteins to glass and polystyrene substrates were characterized by following the force necessary to displace an adsorbed protein-covered microsphere over several orders of magnitude in time. This force was consistent with a power law with exponent a = 0.37 +/- 0.03 on polystyrene, indicating that there is no typical time scale for adhesion on this substrate. On glass, the rate of adhesion depended strongly on protein charge. Forces corresponding to single protein adhesion events were identified. The typical rupture force of a single lysozyme, ferritin, bovine serum albumin, and myoglobin protein adhering to glass was estimated to be 90 +/- 10 pN, 115 +/- 13 pN, 277 +/- 44 pN, and 277 +/- 44 pN, respectively, using a model of the experimental system. These forces, as well as the force amplitudes on hydrophobic polystyrene, correlate with protein stiffness.  相似文献   

18.
Single-molecule force spectroscopy (SMFS) using the atomic force microscope (AFM) has emerged as an important tool for probing biomolecular interaction and exploring the forces, dynamics, and energy landscapes that underlie function and specificity of molecular interaction. These studies require attaching biomolecules on solid supports and AFM tips to measure unbinding forces between individual binding partners. Herein we describe efficient and robust protocols for probing RNA interaction by AFM and show their value on two well-known RNA regulators, the Rev-responsive element (RRE) from the HIV-1 genome and an adenine-sensing riboswitch. The results show the great potential of AFM–SMFS in the investigation of RNA molecular interactions, which will contribute to the development of bionanodevices sensing single RNA molecules.  相似文献   

19.
Type IV pili play an important role in bacterial adhesion, motility, and biofilm formation. Here we present high-resolution atomic force microscopy (AFM) images of type IV pili from Pseudomonas aeruginosa bacteria. An individual pilus ranges in length from 0.5 to 7 microm and has a diameter from 4 to 6 nm, although often, pili bundles in which the individual filaments differed in both length and diameter were seen. By attaching bacteria to AFM tips, it was possible to fasten the bacteria to mica surfaces by pili tethers. Force spectra of tethered pili gave rupture forces of 95 pN. The slopes of force curves close to the rupture force were nearly linear but showed little variation with pilus length. Furthermore, force curves could not be fitted with wormlike-chain polymer stretch models when using realistic persistence lengths for pili. The observation that the slopes near rupture did not depend on the pili length suggests that they do not represent elastic properties of the pili. It is possible that this region of the force curves is determined by an elastic element that is part of the bacterial wall, although further experiments are needed to confirm this.  相似文献   

20.
Yuan C  Chen A  Kolb P  Moy VT 《Biochemistry》2000,39(33):10219-10223
The dissociation of ligand and receptor involves multiple transitions between intermediate states formed during the unbinding process. In this paper, we explored the energy landscape of the streptavidin-biotin interaction by using the atomic force microscope (AFM) to measure the unbinding dynamics of individual ligand-receptor complexes. The rupture force of the streptavidin-biotin bond increased more than 2-fold over a range of loading rates between 100 and 5000 pN/s. Moreover, the force measurements showed two regimes of loading in the streptavidin-biotin force spectrum, revealing the presence of two activation barriers in the unbinding process. Parallel experiments carried out with a streptavidin mutant (W120F) were used to investigate the molecular determinants of the activation barriers. From these experiments, we attributed the outer activation barrier in the energy landscape to the molecular interaction of the '3-4' loop of streptavidin that closes behind biotin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号