首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyperprolactinemia (hyperPRL) induced by grafting four pituitary glands under the kidney capsule suppresses copulatory behavior in male rats and sexually naive male mice. In mice sexual experience attenuates the suppressive effects of hyperPRL on mating behavior, thus a comparison of the behavioral consequences of inducing hyperPRL in sexually naive and experienced male rats was undertaken. Hyperprolactinemia had a significant suppressive effect on mating behavior in both groups of animals. Experienced animals showed deficits in all parameters studied except mount frequency and postejaculatory interval, while naive animals differed from respective controls only in mount latency, intromission latency, and intromission frequency. To determine if the inhibition of chronically elevated prolactin (PRL) levels would reverse the suppression of gonadotropin secretion and copulatory behavior in hyperprolactinemic animals, the effects of bromocriptine (CB-154) administration on plasma hormone levels and mating behavior were examined in pituitary-grafted and control rats. Bromocriptine treatment (1 mg/day for 14 days) led to increases in sexual activity in both the sham-operated and grafted animals. In the grafted animals, plasma PRL was reduced and plasma LH significantly increased in the CB-154-treated animals when compared to oil-treated controls. In sham-operated animals, CB-154 produced no significant changes in plasma LH or FSH despite the suppressed PRL levels. These results indicate that (1) hyperPRL induced by pituitary grafts can cause deficits in mating behavior in male rats despite previous sexual experience, and (2) while CB-154 may be acting through other mechanisms to stimulate copulatory behavior, the reduction of chronically elevated PRL levels due to CB-154 treatment is responsible for reversal of the suppressive effects of hyperPRL on LH secretion.  相似文献   

2.
Basal serum LH and FSH values were found to be within normal limits in 9 homosexual men. The mean LH and FSH responses following the intravenous administration of 100 microgram of LRH were not significantly different from that of heterosexual controls. In addition, the mean basal plasma serum testosterone was similar in the two groups. There is thus no definite implication of endocrine factors in the genesis of male homosexuality.  相似文献   

3.
Naloxone produces large increases in serum luteinizing hormone (LH) levels in normal males and females, supporting a role for endogenous opioids (EOP) in the tonic inhibition of LH. Since the antagonist apparently exerts no important effects on the pituitary, the reasonable assumption has been made that it elevates gonadotropin levels by affecting the release of LH-releasing hormone (LHRH) from the hypothalamus. However, at present there is no direct in vivo evidence supporting this widely-held view. In an attempt to directly demonstrate that naloxone increases the secretion of LHRH, and thereby elevates serum LH levels, we examined whether a potent synthetic antagonist of LHRH ( [D-p Glu1, D-Phe2, D-Trp3,6]-LHRH, GPT-LHRH) blocked the effects of naloxone in male rats with a normal response to naloxone and in those with a markedly enhanced sensitivity to the drug induced by a brief period of morphine pellet implantation. Our results demonstrated that GT-LHRH antagonized equipotent doses of LHRH (100 ng/kg) and naloxone (0.5 mg/kg) over a similar time course with approximately the same AD50. Most importantly, however, we showed that the GPT-LHRH produced equivalent, parallel shifts to the right in the dose-response curves for LHRH and naloxone, indicative of competitive inhibition. We also found that GPT-LHRH completely abolished the enhanced response to naloxone's effects on LH which occurs in morphine-pretreated rats. Since we observed no competition between LHRH and naloxone for their binding sites in pituitary or brain, the only viable interpretation of our results is that naloxone increases LH by inducing the release of LHRH.  相似文献   

4.
Pubertal and young adult male rats release more luteinizing hormone (LH) in response to luteinizing hormone releasing hormone (LHRH) if pretreated with LHRH than if pretreated with saline. Immature male rats do not show this self-priming effect. In order to examine the role of acute changes in testicular steroids in this process, immature (29-30 days old) or pubertal (50-51 days old) male rats were castrated or sham operated under ketamine HCl anesthesia. Beginning immediately after completion of the surgery, they were given three priming injections of 10 ng LHRH/100 g body wt or saline at 30-min intervals. Thirty minutes after the third priming injection, a blood sample was obtained by cardiac puncture followed immediately by a challenge injection of 50 ng LHRH/100 g body wt given to both saline and LHRH primed groups. Ten minutes after the challenge injection a final blood sample was obtained by heart puncture. Serum was assayed for LH concentration by radioimmunoassay. Sham-operated pubertal rats showed a typical self-priming effect. Animals pretreated with LHRH released significantly (P less than 0.01) more LH in response to the challenge injection than did rats pretreated with saline. Acute castration also resulted in a significant (P less than 0.001) self-priming effect in pubertal rats. As anticipated, sham castrated immature males did not show a self-priming effect. Acutely castrated immature rats however, showed a significant (P less than 0.05) self-priming effect. These data provide support for the hypothesis that, prior to puberty, increases in testosterone during the priming process inhibit the expression of the self-priming effect.  相似文献   

5.
The purpose of the present investigation was to determine if estrogen, aromatizable androgen or nonaromatizable androgen is capable of (1) inducing copulatory behavior and (2) inhibiting the postcastration rise in plasma LH. Castrate male rats were injected daily with either 1 mg testosterone (T), androstenedione (A), dihydrotestosterone (DHT), or 25 μg estradiol benzoate (EB) or oil and tested weekly for masculine behavior and for lordosis behavior after 38 days of steroid treatment. On day 40 blood was collected for radioimmunoassay of plasma LH. At least 89% of the males treated with T, A, or EB and 55% of those treated with DHT displayed ejaculatory behavior whereas none of the oil-treated males showed male copulatory behavior. Only estrogen-treated males displayed lordosis behavior. T and to a lesser extent A treatment reduced high levels of plasma LH; however, DHT and EB further reduced plasma LH to undectable levels. The relative potency of the steroid effect in stimulating accessory sex tissues followed the order: DHT > T > A > EB = oil. Significant dissociation was observed between the effects of these steroids on peripheral morphology, negative feedback, and mating behavior. These results indicate that masculine behavior is facilitated to the greatest extent, although not exclusively, by centrally acting aromatizable androgen or estrogen, whereas under the present conditions only estrogen stimulates feminine behavior.  相似文献   

6.
The copulatory behavior of mammalian males is generally characterized by the male's repeated approaches to and mounting of the female. The mounting behavior can lead to intromission, and after several intromissions, an ejaculation occurs. Following ejaculation, the male refrains from sexual activity for a period of time, the so-called "post-ejaculatory interval (PEI)". Most mammals will return to copulate again. Both male hamsters and rats were used and each animal performed five series of copulations with a proestrous female. From the 1st to 5th series of copulations the hamsters showed a shorter PEI than the rats. In addition, the PEI of the hamsters showed no change after each ejaculation, while the rats gradually showed a significantly increased PEI during the five series of copulations.  相似文献   

7.
The effect of a commonly used anaesthetic, ketamine/xylazine and/or carbon dioxide (CO(2)) on plasma luteinizing hormone releasing hormone (LHRH) and testosterone concentrations was determined in male Sprague-Dawley rats. These values were compared with values obtained from pre-anaesthetic control samples. Ketamine/xylazine treatment did not significantly affect testosterone concentrations. In contrast, LHRH started to decrease one hour after ketamine/xylazine administration and continued to significantly decrease after 24 h. In addition, in the CO(2) euthanasia-only group, LHRH concentrations were also significantly decreased. These results suggest that ketamine/xylazine anaesthesia followed by CO(2) euthanasia 24 h later is exerting a significant effect on LHRH concentrations 24 h after anaesthetizing, while only having a slight effect on testosterone, and that CO(2) is exerting an immediate significant effect on LHRH. In conclusion, LHRH analysis should be avoided after ketamine/xylazine anaesthesia and CO(2) euthanasia.  相似文献   

8.
It is well known that yohimbine has a history of popular use because of its supposed aphrodisiac properties. The present study was done to determine whether yohimbine can modify the copulatory behavior of aged male rats. Adult male rats of the Wistar-Imamichi strain, 52 weeks of age and weighing 600-650g, were injected intracerebroventricularly with yohimbine hydrochloride (5, 10 micrograms/10 microliters/rat) or vehicle. Each male was then given the opportunity to mate with a receptive female for 30 min after administration of yohimbine or vehicle. Yohimbine produced significant decreases in the latency to initial mounting and significant increases in the number of mountings. However, there was no ejaculation in the yohimbine-and vehicle-treated males. This study is the first to clearly establish an important modulator of sexual arousal for yohimbine in aged male rats.  相似文献   

9.
10.
Castration of pubertal or young adult male rats eliminates the self-priming effect of luteinizing hormone-releasing hormone on luteinizing hormone secretion. Testosterone, dihydrotestosterone, or estradiol will maintain this effect in castrated animals. In order to explore the mechanism by which both dihydrotestosterone and estradiol are capable of maintaining the effect, intact rats as well as castrated animals implanted with testosterone capsules were treated with the antiandrogen Flutamide. In both intact animals and castrated rats bearing testosterone-filled Silastic capsules, Flutamide blocked the self-priming effect. These data suggest that the androgen receptor is of primary importance in the maintenance of the self-priming effect.  相似文献   

11.
Gonadotropin releasing hormone has been located and found to be secreted by the human placenta in culture. Addition of the releasing hormone upto 1μg concentration in the placental cultures brings about stimulation of chorionic gonadotropin and progesterone secretion. Higher amounts of the decapeptide has an inhibitory influence on both the gonadotropin and the steroid production. The action of the releasing hormone on the placenta could be blocked by the anti-luteinizing hormone releasing hormone monoclonal antibodies indicating a possible site of action of the antibodies for control of fertility  相似文献   

12.
Paraffin sections of mouse adrenals processed with antiserum to luteinizing hormone-releasing hormone (LHRH) in the unlabeled antibody enzyme method reveal moderate staining in the cytoplasm of cells of zona fasciculata and reticularis. The stain is intensified upon pretreatment of sections with LHRH. Pretreated sections processed with solid phase immunoabsorbed LHRH are unstained. Analogues of LHRH deficient in the C-terminal glycine amide inhibit staining, while analogues deficient in the N-terminal pyroglutamic acid have no effect. It is concluded that the adrenal contains receptors for a ligand resembling LHRH in receptor and immunoreactivity. The possibility is considered that the ligand may be an inhibitor of pineal origin.  相似文献   

13.
Luteinizing hormone-releasing hormone (LH-RH) administration has been reported to facilitate male sex behavior. This laboratory has previously reported development of the ‘mounting test’, a paradigm which reflects sexual arousal mechanisms. We have used this test to study the interaction of LH-RH with the central components of male copulatory behavior in the rat.Sixty 90-day-old Long-Evans male rats were screened for sex behavior and divided into 5 treatment groups. For all mounting tests, a local anesthetic was applied to the penis and mounts were scored during a 15-min exposure to a stimulus female. The animals were given 3 successive weekly tests. By the final test, a significant decrement in mounting behavior was noted, and those males given 50 ng LH-RH i.c.v. displayed more mounting in this test than animals given either no treatment or saline (P < 0.01). A slight but significant (P < 0.05) enhancement of performance was also noted in peptide-treated rats in test I. There was no significant difference in any of the tests between animals given lateral cerebroventricular (i.c.v.) injections of 2 μl acidified saline and those given no treatment. When blood samples were taken from similarly treated animals and assayed by radioimmunoassay for luteinizing hormone and testosterone, plasma levels of these hormones were not different at either 30 min or 2 h after injection of saline or LH-RH.Thus, in animals with diminished genital sensory input, LH-RH administration increases mounting behavior without inducing measurable reproductive endocrine changes. It is proposed that this effect results from an interaction of this peptide with the neural substrates of the arousal mechanism.  相似文献   

14.
Summary The structure-activity data of 6 years on 395 analogs of the luteinizing hormone releasing hormone (LHRH) have been studied to determine effective substituents for the ten positions for maximal antiovulatory activity and minimal histamine release. The numbers of substituents studied in the ten positions are as follows: (41)1-(12)2-(12)3-(5)4-(47)5-(52)6-(16)7-(18)8-(4)9-(8)10. In position 1, DNal and DQal were effective with the former being more frequently the better substituent. DpClPhe was uniquely effective in position 2. Positions 3 and 4 are very sensitive to change. D3Pal in position 3 and Ser in position 4 of LHRH were in the best antagonists. PicLys and cPzACAla were the most successful residues in position 5 with cPzACAla being the better substituent. Position 6 was the most flexible and many substituents were effective; particularly DPicLys. Leu7 was most often present in the best antagonists. In position 8, Arg was effective for both antiovulatory activity and histamine release; ILys was effective for potency and lesser histamine release. Pro9 of LHRH was retained. DAlaNH2 10 was in the best antagonists.Abbreviations AABLys N -(4-acetylaminobenzoyl)lysine - AALys N -anisinoyl-lysine - AAPhe 3-(4-acetylaminophenyl)lysine - Abu 2-aminobutyric acid - ACLys N -(6-aminocaproyl)lysine - ACyh 1-aminocyclohexanecarboxylic acid - ACyp 1-aminocyclopentanecarboxylic acid - Aile alloisoleucine - AnGlu 4-(4-methoxy-phenylcarbamoyl)-2-aminobutyric acid - 2ANic 2-aminonicotinic acid - 6ANic 6-aminonicotinic acid - APic 6-aminopicolinic acid - APh 4-aminobenzoic acid - APhe 4-aminophynylalanine - APz 3-amino-2-pyrazinecarboxylic acid - Aze azetidine-2-carboxylic acid - Bim 5-benzimidazolecarboxylic acid - BzLys N -benzoyllysine - Cit citrulline - Cl2Phe 3-(3,4-dichlorphenyl)alanine - cPzACAla cis-3-(4-pyrazinylcarbonylaminocyclohexyl)alnine - cPmACAla cis-3-[4-(4-pyrimidylcarbonyl)aminocyclohexyl]alanine - Dbf 3-(2-dibenzofuranyl)alanine - DMGLys N -(N,N-dimethylglycyl)lysine - Dpo N -(4,6-dimethyl-2-pyrimidyl)-ornithine - F2Ala 3,3-difluoroalanine - hNal 4-(2-naphthyl)-2-aminobutyric acid - HOBLys N -(4-hydroxybenzoyl)lysine - hpClPhe 4-(4-chlorophenyl)-2-amino-butyric acid - Hse homoserine, 2-amino-4-hydroxybutanoic acid - ICapLys N -(6-isopropylaminocaproyl)lysine - ILys N -isopropyllysine - Ind indoline-2-carboxylic acid - INicLys N -isonicotinoyllysine - IOrn N -isopropylornithine - Me3Arg NG,NG,NG-trimethylarginine - Me2Lys N ,N -dimethyllysine - MNal 3-[(6-methyl)-2-naphtyl]alanine - MNicLys N -(6-methylpicolinoyl)lysine - MPicLys N -(6-methylpicolinoyl)lysine - MOB 4-methoxybenzoyl - MpClPhe N-methyl-3-(4-chlorphenyl)lysine - MPZGlu glutamic acid,-4-methylpiperazine - Nal 3-(2-naphthyl)alanine - Nap 2-naphthoic acid - NicLys N -nicotinoyllysine - NO2B 4-nitrobenzoyl - NO2Phe 3-(4-nitrophenyl)alanine - oClPhe 3-(2-chlorphenyl)alanine - Opt O-phenyl-tyrosine - Pal 3-(3-pyridyl)alanine - 2Pal 3-(2-pyridyl)alanine - 2PALys N -(3-pyridylacetyl)lysine - pCapLys N -(6-picolinoylaminocaproyl)lysine - pClPhe 3-(4-chlorophenyl)alanine - pFPhe 3-(4-fluorophenyl)-alanine - Pic picolinic acid - PicLys N -picolinoyllysine - Pip piperidine-2-car-boxylic acid - PmcLys N -(4-pyrimidylcarbonyl)lysine - Ptf 3-(4-trifluromethyl phenyl)alanine - Pz pyrazinecarboxylic acid - PzAla 3-pyrazinylalanine - PzAPhe 3-(4-pyrazinylcarbonylaminophenyl)alanine - Qal 3-(3-quinolyl)alanine - Qnd-Lys N -quinaldoyllysine - Qui 3-quinolinecarboxylic acid - Qux 2-quinoxalinecarboxylic acid - Tic 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid - TinGly 2-thienylglycine - tNACAla trans-3-(4-nicotinoylaminocyclohexyl)-alanine - tPACAla trans-3-(4-picolinoylaminocyclohexyl)alanine  相似文献   

15.
16.
The changes in serum gonadotrophins in male hamsters following one injection of 15 μg luteinizing hormone releasing hormone (LHRH) (Group A) were compared with those following the last injection of LHRH in animals receiving an injection approximately every 12 hr for 4 days (Group B) or 12 days (Group C). Peak follicle stimulating hormone (FSH) levels (ng/ml) were 1776±218 (Group A), 2904±346 (Group B), and 4336±449 (Group C). Peak luteinizing hormone (LH) values (ng/ml) were 1352±80 (Group A), 410±12 (Group B), and 498±53 (Group C). Serum FSH:LH ratios, calculated from the concentrations measured 16 hr after the last LHRH injections, were higher in Groups B and C than in Group A. Similar injections of LHRH (100 ng or 15 μg/injection) for 6 days elevated the serum FSH:LH ratio in intact males. Five such LHRH injections (100 ng/injection) blunted the rise in serum LH in orchidectomized hamsters. Direct effects of LHRH on gonadotrophin secretory dynamics or altered brain-pituitary-testicular interactions may alter the ratio of FSH to LH in the hamster.  相似文献   

17.
Adult male hamsters were castrated, and four weeks later, after a single mating test, began receiving daily 100 μg injections of testosterone (T), androstenedione (AD), or testosterone propionate (TP). Mating tests were conducted at regular intervals during the eight week treatment period. Results indicated the superiority of TP in reinstating intromissions and ejaculations. The T and AD groups did not differ on any of the measures, a result which agrees with previous similar experiments using rats.  相似文献   

18.
19.
Mating was studied in sexually experienced, gonadally intact male rats assigned to two surgical groups matched on the basis of mean mounting frequency during behavioral screening trials conducted prior to the study. Estradiol (E(2)) was delivered bilaterally into the medial preoptic area (MPO) of experimental males by means of hormone-coated implants, and fadrozole was given sc (0.25 mg/kg/day) via osmotic minipumps to block E(2) formation from testicular testosterone throughout the brain. Control males received blank bilateral implants in the MPO and sc fadrozole. After the completion of behavioral testing, immunocytochemical comparisons of the brains from experimental and control rats were made using the H222 antiestrogen receptor (ER) antibody, whose labeling is inhibited by the presence of E(2). The histology demonstrated that E(2) was confined exclusively to the MPO of experimental males but was absent throughout the brains of controls. In controls, mounting decreased significantly by the 7th day after surgery compared with presurgical levels and did not recover. In contrast, on all postsurgical days, the mounting frequency of the experimental group was significantly higher than that of controls. Although experimental males also showed an initial, significant postsurgical decline in mounting frequency, it recovered completely by the 28th postoperative day. Ejaculations declined significantly after surgery in both groups but, unlike in controls whose performance remained low, ejaculations in experimental males partially recovered and were significantly higher than in controls during the postoperative period. Results showed that ER-containing neurons in the MPO influence male rat copulatory behavior.  相似文献   

20.
In order to define both level and severity of defect in patients with idiopathic multiple pituitary hormone deficiencies (MPHD) and to find out which patient might benefit from pulsatile LHRH substitution therapy, the effect of short-term pulsatile LHRH infusion in 6 affected male adolescents was studied. Controls were 9 boys with constitutional delay of puberty (CD). During a spontaneous nocturnal plasma profile LH and FSH levels were prepubertal with little evidence of pulsatile secretory LH activity in all MPHD patients. During short-term pulsatile LHRH stimulation (36 h), however, all showed a significant rise in mean LH and FSH levels (p less than 0.0001). Linear regression analysis revealed significant continuous increases of FSH (p less than 0.001) in all patients and of LH (p less than 0.01) in all but one patient. These changes were not accompanied by an increase of testosterone, androstenedione and DHAS levels. Since all MPHD patients showed steadily increasing gonadotropin levels if stimulated in a pulsatile manner, we conclude that the defect might only in part be located at the pituitary level. Long-term pulsatile substitution therapy with LHRH is likely to be successful in these patients as has been demonstrated in patients with known hypothalamic defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号