首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The mutant plant of Flaveria linearis characterized by Brown et al. (Plant Physiol. 81: 212-215) was studied to determine the cause of the reduced sensitivity to O2. Analysis of CO2 assimilation metabolites of freeze clamped leaves revealed that both 3-phosphoglycerate and ribulose 1,5-bisphosphate were high in the mutant plant relative to F. linearis with normal O2 sensitivity. The kcat of ribulose-1,5-bisphosphate carboxylase (RuBPCase) was equal in all plant material tested (range 18-22 s−1) indicating that no tight binding inhibitor was present. The degree of RuBPCase carbamylation was reduced in the mutant plant relative to the wild-type plant. Since 3-phosphoglycerate was high in the mutant plant and photosynthesis did not exhibit properties associated with RuBPCase limitations, we believe that the decarbamylation of RuBPCase was a consequence of another lesion in photosynthesis. Fructose 1,6-bisphosphate and its precursors, such as the triose phosphates, were in high concentration in the mutant plant relative to the wild type. The concentrations of the product of the fructose 1,6-bisphosphatase reaction, fructose 6-phosphate, and its isomer, glucose 6-phosphate, were the same in both plants. We found that the mutant plant had up to 75% less cytosolic fructose 1,6-bisphosphatase activity than the wild type but comparable levels of stromal fructose 1,6-bisphosphatase. We conclude that the reduced fructose-1,6-bisphosphatase activity restricts the mutant plant's capacity for sucrose synthesis and this leads to reduced or reversed O2 sensitivity.  相似文献   

4.
5.
6.
《Autophagy》2013,9(3):146-156
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is induced during glucose starvation. After the addition of glucose, inactivated FBPase is selectively targeted to a novel type of Vid (vacuolar import and degradation) vesicle and then to the vacuole for degradation. To identify proteins involved in this pathway, we screened various libraries for mutants that failed to degrade FBPase. Via these approaches, subunits of the vacuolar H+ ATPase (V-ATPase) have been identified repeatedly. The VATPase has established roles in endocytosis, sorting of carboxypeptidase Y and homotypic vacuole fusion. Here, we show that Stv1p, Vph1p, and other subunits of the VATPase are required for FBPase degradation. VPH1 and V0 domain subunits such as Vma3p were required for both Vid vesicle and vacuole function, as determined by an in vitro fusion assay. However, STV1 was only required for the proper function of the Vid vesicles. We also show that the V1 domain participates in the Vid vesicle to vacuoletrafficking step, since most of the V1 subunits are necessary for Vid vesicle-vacuole fusionto occur. The V0 and V1 domains are assembled following a glucose shift and theassembly is independent of protein kinase A and RAV genes. Assembly of the V0 complexis necessary for FBPase trafficking, since mutants that block the assembly and transport ofV0 out of the ER were defective in FBPase degradation.  相似文献   

7.
8.
Selective treatment of pig kidney fructose 1,6-bisphosphatase with cyanate leads to the formation of an active carbamoylated derivative that shows no cooperative interaction between the AMP-binding sites, but completely retains the sensitivity to the inhibitor. By an exhaustive carbamoylation of the enzyme a derivative is formed that has a complete loss of cooperativity and a decrease of sensitivity to AMP. It was proposed that the observed changes of allosteric properties were due to the chemical modification of two lysine residues per enzyme subunit [Slebe et al. (1983), J. Protein Chem. 2, 437–443]. Studies of the temperature dependence of AMP sensitivity and the interaction with Cibacron Blue Sepharose of carbamoylated fructose 1,6-bisphosphatase derivatives indicate that the lysine residue involved in AMP sensitivity is located at the allosteric AMP site, while the lysine residue involved in AMP cooperativity is at a distinct location. Using [14C]cyanate, we identified both lysine residues in the primary structure of the enzyme; Lys50 is essential for AMP cooperativity and Lys112 appears to be the reactive residue involved in the AMP sensitivity. According to the fructose 1,6-bisphosphatase crystal structure, Lys50 is strategically positioned at the C1–C2 interface, near the molecular center of the tetramer, and Lys112 is in the AMP-binding site. The results reported here, combined with the structural data of the enzyme, strongly suggest that the C1ndash;C2 interface is critical for the propagation of the allosteric signal among the AMP sites on different subunits.  相似文献   

9.
The kinetic parameters of the photosynthetic fructose-1,6-bisphosphatase isolated from Peltigera rufescens (Weis) Mudd. were measured on a seasonal basis and during a laboratory-induced temperature acclimation. Both the substrate affinity and Ea changed on a seasonal basis. During the summer, the Ea decreased from 91.8 to 62.3 kilojoules per mole. The Km fructose-1,6-bisphosphate measured at temperatures above 25°C was also found to decrease by 50%. This seasonal change in Km can be induced by growing the lichen under appropriate conditions for 2 weeks, and is correlated to a change in the net photosynthetic rates. It is hypothesized that this change in fructose-1,6-bisphosphatase is related to the seasonal temperature acclimation process that has been previously reported in this species.  相似文献   

10.
Synechococcus PCC 7942 contains two fructose-1,6-bisphosphataseisozymes (FBPase-I and FBPase-II), while Synechocystis PCC 6803has only one (FBPase-I) in spite of the occurrence of two FBPaseisozyme genes [Tamoi et al. (1998) Biochim. Biophys. Acta 1383:232]. We now demonstrate that disruption of the gene encodingFBPase-II (fbp-II) with a kanamycin resistance gene cartridgedoes not affect cell growth, Chl content, or CO2 assimilationin Synechococcus PCC 7942, and disruption of the gene encodingFBPase-I (fbp-I) is a lethal mutation in both cyanobacteria.Accordingly, it is clear that FBPase-I is necessary to sustainphotosynthesis and gluconeogenesis in cyanobacteria. (Received September 10, 1998; Accepted December 10, 1998)  相似文献   

11.
Two enzymes capable of hydrolyzing fructose-1,6-bisphosphate (FBP) have been isolated from the foliose lichen Peltigera rufescens (Weis) Mudd. These enzymes can be separated using Sephadex G-100 and DEAE Sephacel chromatography. One enzyme has a pH optimum of 6.5, and a substrate affinity of 228 micromolar FBP. This enzyme does not require MgCl2 for activity, and is inhibited by AMP. The second enzyme has a pH optimum of 9.0, with no activity below pH 7.5. This enzyme responds sigmoidally to Mg2+, with half-saturation concentration of 2.0 millimolar MgCl2, and demonstrates hyperbolic kinetics for FBP (Km = 39 micromolar). This enzyme is activated by 20 millimolar dithiothreitol, is inhibited by AMP, but is not affected by fructose-2-6-bisphosphate. It is hypothesized that the latter enzyme is involved in the photosynthetic process, while the former enzyme is a nonspecific acid phosphatase.  相似文献   

12.
比较了照光和黑暗条件下玉米叶片果糖—6—磷酸激酶—2(PFK-2)和果糖—2,6—二磷酸酯酶(FBPase-2)的活力变化。当玉米植株从暗中转入光下后,其叶片PFK—2的活力随光照时间的延长而逐渐降低,而FBPase-2活力变化不明显;从光下转入暗后叶片PFK-2活力明显上升,FBPase-2活力仍无明显变化;其PFK-2/FBPase-2比值在光处理时下降,暗处理时上升。同时叶片中果糖—2,6—二磷酸的含量与PFK-2/FBPase-2活力比值的变化趋势一致。连续光照 20 h,PFK-2活力持续下降,表明PFK-2的光钝化现象与玉米植株的昼夜节律变化无关。  相似文献   

13.
Inhibitor experiments indicate that light effect mediatorII which is reductively activated by transfer of electrons from the photosynthetic electron transport system at or beyond ferredoxin, is involved in activation by light of fructose-1,6-bisphosphatase in the pea plant. Activation proceeds optimally when the pH is low and Mg2+ is 10 millimolar. Modulation by light results in increases in maximal velocity, apparently as a result of changes in enzyme conformation. Pea leaf thylakoids are effective in modulating the activity of glyceraldehyde-3-phosphate dehydrogenase but not of fructose-1,6-bisphosphatase or glucose-6-phosphate dehydrogenase in Kalanchoë stromal extracts. There is apparently species specificity for modulation of some, but not all, of the modulatable enzymes.  相似文献   

14.
15.
16.
Leaf cytosolic fructose-1,6-bisphosphatase (FBPase), partially purified from both spinach (Spinacia oleracea, var Hipack) and peas (Pisum sativum, var Progress No. 9), is reversibly inactivated by exposure to low temperature. Thus, even though assays were conducted at 22°C, samples incubated at 0 to 12°C had greatly reduced activity relative to controls maintained at 22°C. Following incubation at 22°C prior to assay, the inactivated samples regained their initial activity. Chloroplast FBPase, by contrast, was unaffected by low temperature treatment. This feature as well as lack of a response of cytosolic FBPase to thioredoxins f or cf and to chloroplast FBPase antibody indicate that the FBPase isozymes of leaves are different proteins.  相似文献   

17.
M. Hoffman  H. L. Chiang 《Genetics》1996,143(4):1555-1566
The key regulatory enzyme in the gluconeogenesis pathway, fructose-1,6-bisphosphatase (FBPase), is induced when Saccharomyces cerevisiae are grown in medium containing a poor carbon source. FBPase is targeted to the yeast vacuole for degradation when glucose-starved cells are replenished with fresh glucose. To identify genes involved in the FBPase degradation pathway, mutants that failed to degrade FBPase in response to glucose were isolated using a colony-blotting procedure. These vacuolar import and degradation-deficient (vid) mutants were placed into 20 complementation groups. They are distinct from the known sec, vps or pep mutants affecting protein secretion, vacuolar sorting and vacuolar proteolysis in that they sort CpY correctly and regulate osmotic pressure normally. Despite the presence of FBPase antigen in these mutants, FBPase is completely inactivated in all vid mutants, indicating that the c-AMP-dependent signal transduction pathway and inactivation must function properly in vid mutants. vid mutants block FBPase degradation by accumulating FBPase in the cytosol and also in small vesicles in the cytoplasm. FBPase may be targeted to small vesicles before uptake by the vacuole.  相似文献   

18.
The enzyme fructose- 1,6-diphosphatase (FDPase), involved in the reductive cycle of the pentose phosphate pathway, has been purified from spinach leaves by heating (30 min at 60°), “salting out” with ammonium sulphate (between 30–70% of saturation), filtration through Sephadex G-100 and G-200, fractionation on DEAE-52 cellulose and preparative electrophoresis on polyacrylamide gel. Filtration through DEAE-cellulose led to the isolation of two active fractions (fractions I and II) with very close MWs and isoelectric points. By electrophoresis on acrylamide gel, both fractions gave two active fractions (fractions Ia-Ib and IIa-IIb). The fractions with low electrophoretic migration rate—Ib and IIb—are stable in acid and neutral pH, have a MW between 90 000 and 110 000 and constitute the native form of the photosynthetic enzyme. The fractions of faster migration rate—Ia and IIa-originate from the corresponding fractions Ib and IIb under alkaline conditions, show half the MW of the respective fractions, and behave as subunits of the original dimer form. Measured by electrofocusing, the four active fractions have isoclectric points in the range 4·10–4.30.  相似文献   

19.
The substrate level of the photosynthetic reductive pentosephosphate cycle in spinach leaves during SO2 fumigation wassurveyed. At the beginning of SO2 fumigation, fructose-1,6-bisphosphateincreased and fructose-6-phosphate decreased, while ribulose-1,5-bisphosphateremained unchanged and 3-phosphoglyceric acid rapidly decreased.These results suggested that the inhibition of photosynthesisin spinach leaves with SO2 might be due to inactivation of fructose-1,6-bisphosphatase. (Received May 26, 1982; Accepted September 27, 1982)  相似文献   

20.
The cytosolic fructose 1,6-bisphosphatase from spinach (Spinacia oleracea U.S. hybrid 424) leaves has been partially purified and its response to fructose 2,6-bisphosphate, AMP, and fructose 1,6-bisphosphate studied, using concentrations present in the cytosol during photosynthesis. In the presence of fructose 2,6-bisphosphate, the substrate saturation kinetics for fructose 1,6-bisphosphate are sigmoidal, with half-maximal activity being attained in 0.1 to 1 millimolar concentration range. The inhibition is enhanced by AMP. Using these results, and information published elsewhere on metabolite concentrations, it is discussed how fructose 1,6-bisphosphatase activity will vary in vivo in response to alterations in the availability of triose phosphate and AMP, and the accumulation of the product, fructose 6-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号