首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5‐Aminolevulinate synthase (ALAS) controls the rate‐limiting step of heme biosynthesis in mammals by catalyzing the condensation of succinyl‐coenzyme A and glycine to produce 5‐aminolevulinate, coenzyme‐A (CoA), and carbon dioxide. ALAS is a member of the α‐oxoamine synthase family of pyridoxal 5′‐phosphate (PLP)‐dependent enzymes and shares high degree of structural similarity and reaction mechanism with the other members of the family. The X‐ray crystal structure of ALAS from Rhodobacter capsulatus reveals that the alkanoate component of succinyl‐CoA is coordinated by a conserved arginine and a threonine. The functions of the corresponding acyl‐CoA‐binding residues in murine erthyroid ALAS (R85 and T430) in relation to acyl‐CoA binding and substrate discrimination were examined using site‐directed mutagenesis and a series of CoA‐derivatives. The catalytic efficiency of the R85L variant with octanoyl‐CoA was 66‐fold higher than that of the wild‐type protein, supporting the proposal of this residue as key in discriminating substrate binding. Substitution of the acyl‐CoA‐binding residues with hydrophobic amino acids caused a ligand‐induced negative dichroic band at 420 nm in the CD spectra, suggesting that these residues affect substrate‐mediated changes to the PLP microenvironment. Transient kinetic analyses of the R85K variant‐catalyzed reactions confirm that this substitution decreases microscopic rates associated with formation and decay of a key reaction intermediate and show that the nature of the acyl‐CoA tail seriously affect product binding. These results show that the bifurcate interaction of the carboxylate moiety of succinyl‐CoA with R85 and T430 is an important determinant in ALAS function and may play a role in substrate specificity.  相似文献   

2.
Thiolases are CoA-dependent enzymes which catalyze the formation of a carbon-carbon bond in a Claisen condensation step and its reverse reaction via a thiolytic degradation mechanism. Mitochondrial acetoacetyl-coenzyme A (CoA) thiolase (T2) is important in the pathways for the synthesis and degradation of ketone bodies as well as for the degradation of 2-methylacetoacetyl-CoA. Human T2 deficiency has been identified in more than 60 patients. A unique property of T2 is its activation by potassium ions. High-resolution human T2 crystal structures are reported for the apo form and the CoA complex, with and without a bound potassium ion. The potassium ion is bound near the CoA binding site and the catalytic site. Binding of the potassium ion at this low-affinity binding site causes the rigidification of a CoA binding loop and an active site loop. Unexpectedly, a high-affinity binding site for a chloride ion has also been identified. The chloride ion is copurified, and its binding site is at the dimer interface, near two catalytic loops. A unique property of T2 is its ability to use 2-methyl-branched acetoacetyl-CoA as a substrate, whereas the other structurally characterized thiolases cannot utilize the 2-methylated compounds. The kinetic measurements show that T2 can degrade acetoacetyl-CoA and 2-methylacetoacetyl-CoA with similar catalytic efficiencies. For both substrates, the turnover numbers increase approximately 3-fold when the potassium ion concentration is increased from 0 to 40 mM KCl. The structural analysis of the active site of T2 indicates that the Phe325-Pro326 dipeptide near the catalytic cavity is responsible for the exclusive 2-methyl-branched substrate specificity.  相似文献   

3.
4.
Potential probes of protein cholesterol and fatty acid binding sites, namely, 12-[(5-iodo-4-azido-2-hydroxybenzoyl)amino]dodecanoate (IFA) and its coenzyme A (IFA:CoA) and cholesteryl (IFA:CEA) esters, were synthesized. These radioactive, photoreactive lipid analogues were recognized as substrates and inhibitors of acyl-CoA:cholesterol O-acyltransferase (ACAT) and cholesterol esterase, neutral lipid binding enzymes which are key elements in the regulation of cellular cholesterol metabolism. In the dark, IFA reversibly inhibited cholesteryl [14C]oleate hydrolysis by purified bovine pancreatic cholesterol esterase with an apparent Ki of 150 microM. Cholesterol esterase inhibition by IFA became irreversible after photolysis with UV light and oleic acid (1 mM) provided 50% protection against inactivation. Incubation of homogeneous bovine pancreatic cholesterol esterase with IFA:CEA resulted in its hydrolysis to IFA and cholesterol, indicating recognition of IFA:CEA as a substrate by cholesterol esterase. The coenzyme A ester, IFA:CoA, was a reversible inhibitor of microsomal ACAT activity under dark conditions (apparent Ki = 20 microM), and photolysis resulted in irreversible inhibition of enzyme activity with 87% efficiency. IFA:CoA was also recognized as a substrate by both liver and aortic microsomal ACATs, with resultant synthesis of 125IFA:CEA. IFA and its derivatives, IFA:CEA and IFA:CoA, are thus inhibitors and substrates for cholesterol esterase and ACAT. Biological recognition of these photoaffinity lipid analogues will facilitate the identification and structural analysis of hitherto uncharacterized protein lipid binding sites.  相似文献   

5.
2-Amino-3-ketobutyrate CoA ligase (KBL, EC 2.3.1.29) is a pyridoxal phosphate (PLP) dependent enzyme, which catalyzes the second reaction step on the main metabolic degradation pathway for threonine. It acts in concert with threonine dehydrogenase and converts 2-amino-3-ketobutyrate, the product of threonine dehydrogenation by the latter enzyme, with the participation of cofactor CoA, to glycine and acetyl-CoA. The enzyme has been well conserved during evolution, with 54% amino acid sequence identity between the Escherichia coli and human enzymes. We present the three-dimensional structure of E. coli KBL determined at 2.0 A resolution. KBL belongs to the alpha family of PLP-dependent enzymes, for which the prototypic member is aspartate aminotransferase. Its closest structural homologue is E. coli 8-amino-7-oxononanoate synthase. Like many other members of the alpha family, the functional form of KBL is a dimer, and one such dimer is found in the asymmetric unit in the crystal. There are two active sites per dimer, located at the dimer interface. Both monomers contribute side chains to each active/substrate binding site. Electron density maps indicated the presence in the crystal of the Schiff base intermediate of 2-amino-3-ketobutyrate and PLP, an external aldimine, which remained bound to KBL throughout the protein purification procedure. The observed interactions between the aldimine and the side chains in the substrate binding site explain the specificity for the substrate and provide the basis for a detailed proposal of the reaction mechanism of KBL. A putative binding site of the CoA cofactor was assigned, and implications for the cooperation with threonine dehydrogenase were considered.  相似文献   

6.
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) is an important enzyme that participates in lignin biosynthesis especially in the formation of cell wall ferulic esters of plants. It plays a pivotal role in the methylation of the 3-hydroxyl group of caffeoyl CoA. Two cDNA clones that code CCoAOMT were isolated earlier from subabul and in the present study; 3D models of CCoAOMT1 and CCoAOMT2 enzymes were built using the MODELLER7v7 software to find out the substrate binding sites. These two proteins differed only in two amino acids and may have little or no functional redundancy. Refined models of the proteins were obtained after energy minimization and molecular dynamics in a solvated water layer. The models were further assessed by PROCHECK, WHATCHECK, Verify_3D and ERRAT programs and the results indicated that these models are reliable for further active site and docking analysis. The refined models showed that the two proteins have 9 and 10 α-helices, 6 and 7 β-sheets respectively. The models were used for docking the substrates CoA, SAM, SAH, caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapyl CoA which showed that CoA and caffeoyl CoA are binding with high affinity with the enzymes in the presence and absence of SAM. It appears therefore that caffeoyl CoA is the substrate for both the isoenzymes. The results also indicated that CoA and caffeoyl CoA are binding with higher affinity to CCoAOMT2 than CCoAOMT1. Therefore, CCoAOMT2 conformation is thought to be the active form that exists in subabul. Docking studies indicated that conserved active site residues Met58, Thr60, Val63, Glu82, Gly84, Ser90, Asp160, Asp162, Thr169, Asn191 and Arg203 in CCoAOMT1 and CCoAOMT2 enzymes create the positive charge to balance the negatively charged caffeoyl CoA and play an important role in maintaining a functional conformation and are directly involved in donor-substrate binding.  相似文献   

7.
Xenobiotic aromatic compounds represent one of the most significant classes of environmental pollutants. A novel benzoate oxidation (box) pathway has been identified recently in Burkholderia xenovorans LB400 (referred to simply as LB400) that is capable of assimilating benzoate and intimately tied to the degradation of polychlorinated biphenyls (PCBs). The box pathway in LB400 is present in two paralogous copies (boxM and boxC) and encodes eight enzymes with the first committed step catalyzed by benzoate CoA ligase (BCL). As a first step towards delineating the biochemical role of the box pathway in LB400, we have carried out functional studies of the paralogous BCL enzymes (BCLM and BCLC) with 20 different putative substrates. We have established a structural rationale for the observed substrate specificities on the basis of a 1.84 A crystal structure of BCLM in complex with benzoate. These data show that, while BCLM and BCLC display similar overall substrate specificities, BCLM is significantly more active towards benzoate and 2-aminobenzoate with tighter binding (Km) and a faster reaction rate (Vmax). Despite these clear functional differences, the residues that define the substrate-binding site in BCLM are completely conserved in BCLC, suggesting that second shell residues may play a significant role in substrate recognition and catalysis. Furthermore, comparison of the active site of BCLM with the recently solved structures of 4-chlorobenzoate CoA ligase and 2, 3-dihydroxybenzoate CoA ligase offers additional insight into the molecular features that mediate substrate binding in adenylate-forming enzymes. This study provides the first biochemical characterization of a Box enzyme from LB400 and the first structural characterization of a Box enzyme from any organism, and further substantiates the concept of distinct roles for the two paralogous box pathways in LB400.  相似文献   

8.
The acyl‐AMP forming family of adenylating enzymes catalyze two‐step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X‐ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl‐CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl‐CoA synthetase and 4‐chlorobenzoate:CoA ligase. Most interestingly, the acyl‐binding pocket of the new structure is compared with other acyl‐ and aryl‐CoA synthetases. A comparison of the acyl‐binding pocket of the acyl‐CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl‐binding pocket. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the beta-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9A resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.  相似文献   

10.
The human arylamine N-acetyltransferases NAT1 and NAT2 play an important role in the biotransformation of a plethora of aromatic amine and hydrazine drugs. They are also able to participate in the bioactivation of several known carcinogens. Each of these enzymes is genetically variable in human populations, and polymorphisms in NAT genes have been associated with various cancers. Here we have solved the high resolution crystal structures of human NAT1 and NAT2, including NAT1 in complex with the irreversible inhibitor 2-bromoacetanilide, a NAT1 active site mutant, and NAT2 in complex with CoA, and have refined them to 1.7-, 1.8-, and 1.9-A resolution, respectively. The crystal structures reveal novel structural features unique to human NATs and provide insights into the structural basis of the substrate specificity and genetic polymorphism of these enzymes.  相似文献   

11.
Lignin, a major constituent of plant call wall, is a phenolic heteropolymer. It plays a major role in the development of plants and their defense mechanism against pathogens. Therefore Lignin biosynthesis is one of the critical metabolic pathways. In lignin biosynthesis, the Cinnamoyl CoA reductase is a key enzyme which catalyzes the first step in the pathway. Cinnamoyl CoA reductase provides the substrates which represent the main transitional molecules of lignin biosynthesis pathway, exhibits a high in vitro kinetic preference for feruloyl CoA. In present study, the three-dimensional model of cinnamoyl CoA reductase was constructed based on the crystal structure of Grape Dihydroflavonol 4-Reductase. Furthermore, the docking studies were performed to understand the substrate interactions to the active site of CCR. It showed that residues ARG51, ASN52, ASP54 and ASN58 were involved in substrate binding. We also suggest that residue ARG51 in CCR is the determinant residue in competitive inhibition of other substrates. This structural and docking information have prospective implications to understand the mechanism of CCR enzymatic reaction with feruloyl CoA, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.  相似文献   

12.
PhaA from Ralstonia eutropha (RePhaA) is the first enzyme in the polyhydroxyalbutyrate (PHB) biosynthetic pathway and catalyzes the condensation of two molecules of acetyl-CoA to acetoacetyl-CoA. To investigate the molecular mechanism underlying PHB biosynthesis, we determined the crystal structures of the RePhaA protein in apo- and CoA-bound forms. The RePhaA structure adopts the type II biosynthetic thiolase fold forming a tetramer by means of dimerization of two dimers. The crystal structure of RePhaA in complex with CoA revealed that the enzyme contained a unique Phe219 residue, resulting that the ADP moiety binds in somewhat different position compared with that bound in other thiolase enzymes. Our study provides structural insight into the substrate specificity of RePhaA. Results indicate the presence of a small pocket near the Cys88 covalent catalytic residue leading to the possibility of the enzyme to accommodate acetyl-CoA as a sole substrate instead of larger acyl-CoA molecules such as propionyl-CoA. Furthermore, the roles of key residues involved in substrate binding and enzyme catalysis were confirmed by site-directed mutagenesis.  相似文献   

13.
Carnitine acyltransferases catalyze the exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids, and are attractive targets for drug discovery against diabetes and obesity. These enzymes are classified based on their substrate selectivity for short-chain, medium-chain, or long-chain fatty acids. Structural information on carnitine acetyltransferase suggests that residues Met-564 and Phe-565 may be important determinants of substrate selectivity with the side chain of Met-564 located in the putative binding pocket for acyl groups. Both residues are replaced by glycine in carnitine palmitoyltransferases. To assess the functional relevance of this structural observation, we have replaced these two residues with small amino acids by mutagenesis, characterized the substrate preference of the mutants, and determined the crystal structures of two of these mutants. Kinetic studies confirm that the M564G or M564A mutation is sufficient to increase the activity of the enzyme toward medium-chain substrates with hexanoyl-CoA being the preferred substrate for the M564G mutant. The crystal structures of the M564G mutant, both alone and in complex with carnitine, reveal a deep binding pocket that can accommodate the larger acyl group. We have determined the crystal structure of the F565A mutant in a ternary complex with both the carnitine and CoA substrates at a 1.8-A resolution. The F565A mutation has minor effects on the structure or the substrate preference of the enzyme.  相似文献   

14.
The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated "hypothetical protein" in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase "hot dog" fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.  相似文献   

15.
Phenol sulfotransferases (SULTs), which normally bind 3'-phosphoadenosine-5'-phosphosulfate as the donor substrate, are inhibited by CoA and its thioesters. Here, we report that inhibition of bovine SULT1A1 by CoA is time-dependent at neutral pH under non-reducing conditions. The rates of inactivation by CoA indicate an initial reversible SULT:CoA complex with a dissociation constant of 5.7 microM and an inactivation rate constant of 0.07 min(-1). Titrations with CoA and prolonged incubations reveal that inactivation of the dimeric enzyme is stoichiometric, consistent with the observation of complete conversion of the protein to a slightly decreased electrophoretic mobility. Both activity and normal electrophoretic migration are restored by 2-mercaptoethanol. Mutagenesis demonstrated that Cys168 is the site of CoA adduction, and a consistent model was constructed that reveals a new SULT molecular dynamic. Cysteine reaction kinetics with Ellman's reagent revealed a PAPS-induced structural change consistent with the model that accounts for binding of CoA.  相似文献   

16.
Originally annotated as the initiator of fatty acid synthesis (FAS), β‐ketoacyl‐acyl carrier protein synthase III (KAS III) is a unique component of the bacterial FAS system. Novel variants of KAS III have been identified that promote the de novo use of additional extracellular fatty acids by FAS. These KAS III variants prefer longer acyl‐groups, notably octanoyl‐CoA. Acinetobacter baumannii, a clinically important nosocomial pathogen, contains such a multifunctional KAS III (AbKAS III). To characterize the structural basis of its substrate specificity, we determined the crystal structures of AbKAS III in the presence of different substrates. The acyl‐group binding cavity of AbKAS III and co‐crystal structure of AbKAS III and octanoyl‐CoA confirmed that the cavity can accommodate acyl groups with longer alkyl chains. Interestingly, Cys264 formed a disulfide bond with residual CoA used in the crystallization, which distorted helices at the putative interface with acyl‐carrier proteins. The crystal structure of KAS III in the alternate conformation can also be utilized for designing novel antibiotics.  相似文献   

17.
Enzyme promiscuity is the ability of (some) enzymes to perform alternate reactions or catalyze non-cognate substrate(s). The latter is referred to as substrate promiscuity, widely studied for its biotechnological applications and understanding enzyme evolution. Insights into the structural basis of substrate promiscuity would greatly benefit the design and engineering of enzymes. Previous studies on some enzymes have suggested that flexibility, hydrophobicity, and active site protonation state could play an important role in enzyme promiscuity. However, it is not known yet whether substrate promiscuous enzymes have distinctive structural characteristics compared to specialist enzymes, which are specific for a substrate. In pursuit to address this, we have systematically compared substrate/catalytic binding site structural features of substrate promiscuous with those of specialist enzymes. For this, we have carefully constructed dataset of substrate promiscuous and specialist enzymes. On careful analysis, surprisingly, we found that substrate promiscuous and specialist enzymes are similar in various binding/catalytic site structural features such as flexibility, surface area, hydrophobicity, depth, and secondary structures. Recent studies have also alluded that promiscuity is widespread among enzymes. Based on these observations, we propose that substrate promiscuity could be defined as a continuum feature that varies from narrow (specialist) to broad range of substrate preferences. Moreover, diversity of conformational states of an enzyme accessible for ligand binding may possibly regulate its substrate preferences.  相似文献   

18.
The latter stages of peptidoglycan biosynthesis in Staphylococci involve the synthesis of a pentaglycine bridge on the epsilon amino group of the pentapeptide lysine side chain. Genetic and biochemical evidence suggest that sequential addition of these glycines is catalyzed by three homologous enzymes, FemX (FmhB), FemA, and FemB. The first protein structure from this family, Staphylococcus aureus FemA, has been solved at 2.1 A resolution by X-ray crystallography. The FemA structure reveals a unique organization of several known protein folds involved in peptide and tRNA binding. The surface of the protein also reveals an L-shaped channel suitable for a peptidoglycan substrate. Analysis of the structural features of this enzyme provides clues to the mechanism of action of S. aureus FemA.  相似文献   

19.
Yang K  Strauss E  Huerta C  Zhang H 《Biochemistry》2008,47(5):1369-1380
Pantothenate kinase (PanK) catalyzes the first step of the universal five-step coenzyme A (CoA) biosynthetic pathway. The recently characterized type III PanK (PanK-III, encoded by the coaX gene) is distinct in sequence, structure and enzymatic properties from both the long-known bacterial type I PanK (PanK-I, exemplified by the Escherichia coli CoaA protein) and the predominantly eukaryotic type II PanK (PanK-II). PanK-III enzymes have an unusually high Km for ATP, are resistant to feedback inhibition by CoA, and are unable to utilize the N-alkylpantothenamide family of pantothenate analogues as alternative substrates, thus making type III PanK ineffective in generating CoA analogues as antimetabolites in vivo. Previously, we reported the crystal structure of the PanK-III from Thermotoga maritima and identified it as a member of the "acetate and sugar kinase/heat shock protein 70/actin" (ASKHA) superfamily. Here we report the crystal structures of the same PanK-III in complex with one of its substrates (pantothenate), its product (phosphopantothenate) as well as a ternary complex structure of PanK-III with pantothenate and ADP. These results are combined with isothermal titration calorimetry experiments to present a detailed structural and thermodynamic characterization of the interactions between PanK-III and its substrates ATP and pantothenate. Comparison of substrate binding and catalytic sites of PanK-III with that of eukaryotic PanK-II revealed drastic differences in the binding modes for both ATP and pantothenate substrates, and suggests that these differences may be exploited in the development of new inhibitors specifically targeting PanK-III.  相似文献   

20.
We report a high-throughput phage selection method to identify mutants of Sfp phosphopantetheinyl transferase with altered substrate specificities from a large library of the Sfp enzyme. In this method, Sfp and its peptide substrates are co-displayed on the M13 phage surface as fusions to the phage capsid protein pIII. Phage-displayed Sfp mutants that are active with biotin-conjugated coenzyme A (CoA) analogues would covalently transfer biotin to the peptide substrates anchored on the same phage particle. Affinity selection for biotin-labeled phages would enrich Sfp mutants that recognize CoA analogues for carrier protein modification. We used this method to successfully change the substrate specificity of Sfp and identified mutant enzymes with more than 300-fold increase in catalytic efficiency with 3′-dephospho CoA as the substrate. The method we developed in this study provides a useful platform to display enzymes and their peptide substrates on the phage surface and directly couples phage selection with enzyme catalysis. We envision this method to be applied to engineering the catalytic activities of other protein posttranslational modification enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号