首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether drug-selectable genes can influence expression of the β-globin gene linked to its LCR was assessed here. With the tkNeo gene placed in cis and used to select transfected cells, the β-globin gene was expressed fourfold lower when it was positioned upstream of the LCR rather than downstream. This difference did not occur when the pgkPuro gene replaced tkNeo. Moreover, the β-globin gene situated upstream of the LCR was transcribed without position effects when it was cotransfected with a pgkPuro-containing plasmid, whereas cotransfection with a tkNeo plasmid gave measurable position effects. Previous results from transfected cells selected via a linked tkNeo gene suggested that the 3′ end of the β-globin gene has no impact on LCR-enhanced expression. Here, removal of the 3′ end of the β-globin gene resulted in lower and much more variable expression in both transgenic mice and cells cotransfected with pgkPuro. Together, the results suggest that tkNeo, but not pgkPuro, can strongly influence expression of the β-globin gene linked to its LCR. The findings could partly explain why data on β-globin gene regulation obtained from transfected cells have often not agreed with those obtained using transgenic mice. Hence, one must be careful in choosing a drug-selectable gene for cell transfection studies.  相似文献   

2.
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.  相似文献   

3.
4.
The human beta-globin Locus Control Region (LCR) has two important activities. First, the LCR opens a 200 kb chromosomal domain containing the human epsilon-, gamma- and beta-globin genes and, secondly, these sequences function as a powerful enhancer of epsilon-, gamma- and beta-globin gene expression. Erythroid-specific, DNase I hypersensitive sites (HS) mark sequences that are critical for LCR activity. Previous experiments demonstrated that a 1.9 kb fragment containing the 5' HS 2 site confers position-independent expression in transgenic mice and enhances human beta-globin gene expression 100-fold. Further analysis of this region demonstrates that multiple sequences are required for maximal enhancer activity; deletion of SP1, NF-E2, GATA-1 or USF binding sites significantly decrease beta-globin gene expression. In contrast, no single site is required for position-independent transgene expression; all mice with site-specific mutations in 5' HS 2 express human beta-globin mRNA regardless of the site of transgene integration. Apparently, multiple combinations of protein binding sites in 5' HS 2 are sufficient to prevent chromosomal position effects that inhibit transgene expression.  相似文献   

5.
6.
7.
8.
To examine the function of murine beta-globin locus region (LCR) 5' hypersensitive site 3 (HS3) in its native chromosomal context, we deleted this site from the mouse germ line by using homologous recombination techniques. Previous experiments with human 5' HS3 in transgenic models suggested that this site independently contains at least 50% of total LCR activity and that it interacts preferentially with the human gamma-globin genes in embryonic erythroid cells. However, in this study, we demonstrate that deletion of murine 5' HS3 reduces expression of the linked embryonic epsilon y- and beta H 1-globin genes only minimally in yolk sac-derived erythroid cells and reduces output of the linked adult beta (beta major plus beta minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-neo cassette was left within the HS3 region of the LCR, a much more severe phenotype was observed at all developmental stages, suggesting that PGK-neo interferes with LCR activity when it is retained within the LCR. Collectively, these results suggest that murine 5' HS3 is not required for globin gene switching; importantly, however, it is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult erythrocytes.  相似文献   

9.
L G Guy  R Kothary    L Wall 《Nucleic acids research》1997,25(21):4400-4407
We studied transgenic mice carrying the lacZ reporter gene linked to the erythroid-specific beta-globin promoter and beta-globin locus control region (LCR). Previously, we had demonstrated that the total level of expression of beta-galactosidase enzyme, which is the product of the lacZ gene, varies widely between different transgenic mice due to position effects at the sites of transgene integration. Here, using the X-gal based in situ assay for beta-galactosidase activity, we found that the percent erythroid cells that expressed the transgene also varied widely between the mice. Moreover, a kinetic analysis showed that the average beta-galactosidase content per expressing cell varied both between samples of different transgenic descent and between erythroid cells within each sample, demonstrating that the variable expression of this lacZ transgene was being controlled in a graded manner. These results suggest that the beta-globin LCR enhancers function through a graded model, which is described, rather than the binary mechanism that has been proposed previously for other enhancers.  相似文献   

10.
We previously identified the murine homologue of the human beta-globin Locus Control Region (LCR) 5' HS-2. The lambda clone containing murine 5' HS-2 extends approximately 12 kb upstream from this site; here, we report the sequence of this entire upstream region. The murine homologue of 5' HS-3 is located approximately 16.0 kb upstream from the mouse epsilon y-globin gene, but no region homologous to human 5' HS-4 was present in our clone. Using a reporter system consisting of a human gamma-globin promoter driving the neomycin phosphotransferase gene (gamma-neo), we tested murine LCR fragments extending from -21 to -9 kb (with respect to the epsilon y-globin gene cap site) for activity in classical enhancer and integration site assays in K562 and MEL cells. 5' HS-2 behaved as a powerful enhancer and increased the number of productive integration events (as measured by a colony assay) in both K562 and MEL cells. 5' HS-3 had no activity in K562 cells or in transiently transfected MEL cells, but was nearly as active as 5' HS-2 in the MEL cell colony assay. Two additional tests confirmed the identification of murine 5' HS-3: first, a DNA fragment containing 5' HS-3 confers copy number-dependent, integration-site independent inducibility on a linked beta-globin gene in the MEL cell environment. Secondly, a strong DNAseI hypersensitive site maps to the location of the 5' HS-3 functional core in chromatin derived from MEL cells. Collectively, these data suggest that we have identified the murine homologue of human 5' HS-3, and that this site is functional when integrated into the chromatin of MEL cells but not K562 cells. 5' HS-3 may therefore contain information that contributes to the development-specific expression of the beta-like globin genes.  相似文献   

11.
Integration position-independent expression of human globin transgenes in transgenic mice requires the presence of regulatory elements from the beta-globin locus control region (LCR) in the transgene construct. However, several recent studies have suggested that, while clearly necessary, such elements are not by themselves sufficient to realize this effect. In the case of the human fetal gamma-globin genes, previous results have indicated that additional regulatory information required for sheltering of gamma-globin transgene expression from position effects may reside downstream from the A gamma gene. To investigate this possibility, we established 17 lines of transgenic mice carrying constructs comprising a micro-LCR (microLCR) element, an A gamma-globin gene fragment, and a variable length of 3' sequence information beyond the A gamma 3' HindIII site. gamma-Globin expression during development was studied in 170 individual F2 progeny from these lines. We find that gamma-globin expression becomes sheltered from position effects when the normally position-sensitive microLCR-A gamma construct is extended by 600 bp beyond the 3' HindIII site to include a previously identified regulatory sequence (the A gamma-globin enhancer), the functional significance of which in vivo had heretofore been unclear. The results suggest that the mechanism whereby an upstream LCR achieves sheltering of globin gene expression from position effects involves cooperation with a gene-proximal regulatory element distinct from the promoter region.  相似文献   

12.
The human beta-globin dominant control region (DCR) which flanks the multigene beta-globin locus directs high level, site of integration independent, copy number dependent expression on a linked human beta-globin gene in transgenic mice and stably transfected mouse erythroleukemia (MEL) cells. We have assayed each of the individual DNaseI hypersensitive regions present in the full 15kb DCR for position independence and copy number dependence of a linked beta-globin gene in transgenic mice. The results show that at least three of the individual DNaseI hypersensitive site regions (sites 1, 2 and 3), though expressing at lower levels than the full DCR, are capable of position independent, copy number dependent expression. Site 2 alone directs the highest level of expression of the single site constructs, producing nearly 70% of the level of the full DCR. Sites 1 and 3 each provide 30% of the full activity. Deletion of either site 2 or 3 from the complete set significantly reduces the level of expression, but does not effect position independence or copy number dependence. This demonstrates that sites 2 and 3 are required for full expression and suggests that all the sites are required for the full expression of even a single gene from this multigene locus.  相似文献   

13.
To determine the effect of gene order on globin gene developmental regulation, we produced transgenic mice containing two tandemly arranged gamma- or beta-globin or gamma beta- and beta gamma-globin genes linked to a 2.5-kb cassette containing sequences of the locus control region (LCR). Analysis of constructs containing two identical gamma or beta genes assessed the effect of gene order on globin gene expression, while analysis of constructs containing tandemly arranged gamma and beta genes assessed any additional effects of the trans-acting environment. When two gamma genes were tandemly linked to the LCR, expression from the proximal gamma gene was three- to fourfold higher than expression from the distal gamma gene, and the ratio of proximal to distal gene expression remained unchanged throughout development. Similarly, when two beta genes were tandemly linked to the LCR, the proximal beta gene was predominantly expressed throughout development. These results indicate that proximity to LCR increases gene expression, perhaps by influencing the frequency of interaction between the LCR and globin gene promoters. An arrangement where the gamma gene was proximal and the beta gene distal to the LCR resulted in predominant gamma-gene expression in the embryo. When the order was reversed and the gamma gene was placed distally to the LCR, gamma-gene expression in the embryo was still up to threefold higher than expression of the LCR-proximal beta gene. These findings suggest that the embryonic trans-acting environment interacts preferentially with the gamma genes irrespective of their order or proximity to the LCR. We conclude that promoter competition rather than gene order plays the major role in globin gene switching.  相似文献   

14.
15.
J Ellis  D Talbot  N Dillon    F Grosveld 《The EMBO journal》1993,12(1):127-134
Transgenes linked to the beta-globin locus control region (LCR) are transcribed in a copy-dependent manner that is independent of the integration site. It has previously been shown that the LCR 5'HS2 region does not require its NF-E2 dimer binding site for LCR activity. In this paper we analyse synthetic 5'HS2 core constructs containing point mutations in the other factor binding sites 3' of the NF-E2 dimer site. The results show that 5'HS2 core is a partially active LCR that functions in a concatamer of at least two copies but not when present as a single copy in transgenic mice and that no single binding site within 5'HS2 is required for position-independent expression. In addition, the H-BP factor is identical to upstream stimulatory factor (USF) and full enhancement levels by 5'HS2 core in MEL cells require a combination of all the factor binding sites. We suggest that 5'HS2 cores in a concatamer interact with each other to establish an area of open chromatin and that this process may be the basis of LCR function.  相似文献   

16.
17.
Effective gene therapy constructs based on retrovirus or adeno-associated virus vectors will require regulatory elements that direct expression of genes transduced at single copy. Most beta-globin constructs designed for therapy of beta-thalassemias are regulated by the 5'HS2 component of the locus control region (LCR). Here we show that a human beta-globin gene flanked by two small 5'HS2 core elements or flanked by a 5'HS3 (footprints 1-3) core and a 5'HS2 core are not reproducibly expressed in single copy transgenic mice. In addition, low copy transgene concatamers that contain only dimer 5'HS2 cores fail to express, whereas those that contain monomer 5'HS2 cores express at 14% per copy. These data suggest that spacing between HS cores is crucial for LCR activity. We therefore constructed a novel 3.0 kb LCR cassette in which the 5'HS2, 5'HS3 and 5'HS4 cores are each separated by approximately 700 bp. When linked to the 815 bp beta-globin promoter this LCR directs 45% levels of expression from four independent single copy transgenes. However, the 3.0 kb LCR linked to the 265 bp promoter expresses variable levels, averaging 18%, from three single copy transgenes. Our findings suggest that sequences in the distal promoter play a role in single copy transgene activation and that larger LCR and promoter elements are most suitable for gene therapy applications.  相似文献   

18.
19.
M Reitman  E Lee    H Westphal 《Nucleic acids research》1995,23(10):1790-1794
We have shown previously that the chicken beta A-globin gene, with its 3' enhancer, is expressed in a copy number-dependent manner in transgenic mice. The expression level was low but increased approximately 6-fold upon inclusion of 11 kb of upstream DNA containing four DNase I hypersensitive sites. To study the effect of the individual upstream hypersensitive sites on transgene expression, we produced lines of mice in which the individual upstream sites were linked to the beta A gene and enhancer. RNA levels were measured in blood from adult animals. With each of these four constructs, the level of transgene RNA per DNA copy varied over a > 20-fold range. These data suggest that addition of a hypersensitive site to the beta A-globin/enhancer region abrogates its position independent expression. The average beta A-globin expression per copy in the lines carrying an upstream site was comparable with that in lines without an upstream site. Thus, no single upstream hypersensitive site accounts for the higher level of beta A-globin expression seen in mice containing the complete upstream region. We had shown previously that control of the chicken beta-globin cluster is distributed between at least two regions, the beta A/epsilon enhancer and the upstream region. Our current results suggest that the control mediated by the upstream DNA is itself distributed and is not due to a single hypersensitive site.  相似文献   

20.
Transgenic mice have proven to be an effective expression system for studying developmental control of the human fetal and adult beta-globin genes. In the current work we are interested in developing the transgenic mouse system for the study of the human embryonic beta-globin gene, epsilon. An epsilon-globin gene construction (HSII,I epsilon) containing the human epsilon-globin gene with 0.2 kb of 3' flanking sequence and 13.7 kb of extended 5' flanking region including the erythroid-specific DNase I super-hypersensitive sites HSI and HSII was made. This construction was injected into fertilized mouse ova, and its expression was analyzed in peripheral blood, brain, and liver samples of 13.5 day transgenic fetuses. Fetuses carrying intact copies of the transgene expressed human epsilon-globin mRNA in their peripheral blood. Levels of expression of human epsilon-globin mRNA in these transgenic mice ranged from 2% to 26% per gene copy of the endogenous mouse embryonic epsilon y-globin mRNA level. Furthermore, the human epsilon-globin transgene was expressed specifically in peripheral blood but not in brain or in liver which is an adult erythroid tissue at this stage. Thus, the HSII,I, epsilon transgene was expressed in an erythroid-specific and embryonic stage-specific manner in the transgenic mice. A human epsilon-globin gene construction that did not contain the distal upstream flanking region which includes the HSI and HSII sites, was not expressed in the embryos of transgenic mice. These data indicate that the human epsilon-globin gene with 5' flanking region extending to include DNase I super-hypersensitive sites HSI and HSII is sufficient for the developmentally specific activation of the human epsilon-globin gene in erythroid tissue of transgenic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号