首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult articular chondrocytes are each surrounded by a heterogeneous microenvironment and together form the chondron. Since little is known of chondron development, agarose gel culture, confocal immunohistochemistry and image analysis have been used to characterize the molecular anatomy and temporal development of the chondrocyte pericellular microenvironment in vitro. Two structurally distinct domains were identified during the 12-week culture period. The first comprised a narrow glycocalyx, 1–3 ·m in width, which consolidated over time and was rich in collagen types II, VI, IX and XI, fibronectin, decorin and the aggrecan epitopes, 5D4 and HABR. The second region emerged after 4–6 weeks in culture and progressively developed a broad territorial region up to 12 ·m wide around the chondrocyte and pericellular glycocalyx. Co-localization studies confirmed the dominance of aggrecan epitopes 2B6, EFG-4, 5D4 and HABR in the territorial domain, whereas surface density mapping with NIH image revealed two patterns of staining, one punctate and stippled, the other more uniform in distribution. The pericellular differentiation identified appeared analogous to the chondrons of adult articular cartilage, and provides an appropriate in vitro model for further studies of cell surface receptor function in the orchestration of pericellular matrix assembly This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
This paper describes temporal changes in the metabolism and distribution of newly synthesized aggrecan and the organization of the extracellular matrix when explant cultures of articular cartilage maintained in the presence of fetal calf serum were exposed to retinoic acid for varying periods of time. Explant cultures of articular cartilage were incubated with radiolabeled sulfate prior to exposure to retinoic acid. The radiolabeled and chemical aggrecan present in the tissue and appearing in the culture medium was studied kinetically. Changes in the localization of radiolabeled aggrecan within the extracellular matrix were monitored by autoradiography in relation to type VI collagen distribution in the extracellular matrix. In control cultures where tissue levels of aggrecan remain constant the newly synthesized aggrecan remained closely associated with the territorial matrix surrounding the chondrocytes. Exposure of cultures to retinoic acid for the duration of the experiment, resulted in the extensive loss of aggrecan from the tissue and the redistribution of the remaining radiolabeled aggrecan from the chondron and territorial matrix into the inter-territorial matrix. These changes preceded alterations in the organization of type VI collagen in the extracellular matrix that involved the remodeling of the chondron and the appearance of type VI collagen in the inter-territorial matrix; there was also evidence of chondrocyte proliferation and clustering. In cartilage explant cultures exposed to retinoic acid for 24 h there was no loss of aggrecan from the matrix but there was an extensive redistribution of the radiolabeled aggrecan into the inter-territorial matrix. This work shows that maintenance of the structure and organization of the extracellular matrix that comprises the chondron and pericellular microenvironment of chondrocytes in articular cartilage is important for the regulation of the distribution of newly synthesized aggrecan monomers within the tissue.  相似文献   

3.
The interaction of the cell with its surrounding extracellular matrix (ECM) has a major effect on cell metabolism. We have previously shown that chondrons, chondrocytes with their in vivo-formed pericellular matrix, can be enzymatically isolated from articular cartilage. To study the effect of the native chondrocyte pericellular matrix on ECM production and assembly, chondrons were compared with chondrocytes isolated without any pericellular matrix. Immediately after isolation from human cartilage, chondrons and chondrocytes were centrifuged into pellets and cultured. Chondron pellets had a greater increase in weight over 8 weeks, were more hyaline appearing, and had more type II collagen deposition and assembly than chondrocyte pellets. Minimal type I procollagen immunofluorescence was detected for both chondron and chondrocyte pellets. Chondron pellets had a 10-fold increase in proteoglycan content compared with a six-fold increase for chondrocyte pellets over 8 weeks (P<0.0001). There was no significant cell division for either chondron or chondrocyte pellets. The majority of cells within both chondron and chondrocyte pellets maintained their polygonal or rounded shape except for a thin, superficial edging of flattened cells. This edging was similar to a perichondrium with abundant type I collagen and fibronectin, and decreased type II collagen and proteoglycan content compared with the remainder of the pellet. This study demonstrates that the native pericellular matrix promotes matrix production and assembly in vitro. Further, the continued matrix production and assembly throughout the 8-week culture period make chondron pellet cultures valuable as a hyaline-like cartilage model in vitro.  相似文献   

4.
Although the pericellular matrix (PCM) plays a central role in the communication between chondrocytes and extracellular matrix, its composition is largely unknown. In this study, the PCM was investigated with a proteomic approach using chondrons, which are enzymatically isolated constructs including the chondrocyte and its surrounding PCM. Chondrons and chondrocytes alone were isolated from human articular cartilage. Proteins extracted from chondrons and chondrocytes were used for two-dimensional electrophoresis. Protein spots were quantitatively compared between chondron and chondrocyte gels. Cellular proteins, which had similar density between chondron and chondrocyte gels, did not proceed for analysis. Since chondrons only differ from chondrocytes in association of the PCM, protein spots in the chondron gels that had higher quantity than that in the chondrocyte gels were selected as candidates of the PCM components and processed for mass spectrometry. Among 15 identified peptides, several were fragments of the three type VI collagen chains (α-1, α-2, and α-3). Other identified PCM proteins included triosephosphate isomerase, transforming growth factor-β induced protein, peroxiredoxin-4, ADAM (A disintegrin and metalloproteinases) 28, and latent-transforming growth factor beta-binding protein-2. These PCM components were verified with immunohisto(cyto)chemistry for localization in the PCM region of articular cartilage. The abundance of type VI collagen in the PCM emphasizes its importance to the microenvironment of chondrocytes. Several proteins were localized in the PCM of chondrocytes for the first time and that warrants further investigation for their functions in cartilage biology.  相似文献   

5.
The extracellular matrix of articular cartilage modulates the mechanical signals sensed by the chondrocytes. In the present study, a finite element model (FEM) of the chondrocyte and its microenvironment was reconstructed using the information from fourier transform infrared imaging spectroscopy. This environment consisted of pericellular, territorial (mainly proteoglycans), and inter-territorial (mainly collagen) matrices. The chondrocyte, pericellular, and territorial matrix were assumedto be mechanically isotropic and poroelastic, whereas the inter-territorial matrix, due to its high collagen content, was assumed to be transversely isotropic and poroelastic. Under instantaneous strain-controlled compression, the FEM indicated that the fluid pressure within the chondrocyte increased nonlinearly as a function of the in-plane Young’s modulus of the collagen network. Under instantaneous force-controlled compression, the chondrocyte experienced the highest fluid pressure when the in-plane Young’s modulus of the collagen network was ~4 MPa. Based on the present results, the mechanical characteristics of the collagen network of articular cartilage can modify fluid flow and stresses in chondrocytes. Therefore, the integrity of the collagen network may be an important determinant in cell stimulation and in the control of the matrix maintenance.  相似文献   

6.
Chondrons have recently been extracted from adult articular cartilages and techniques developed to study their structure and composition in isolation. This study introduces methods to immobilize isolated canine chondrons in thin layers of agarose gel for immunohistochemistry and future in vitro studies. An antibody to Type VI collagen which stained the chondron in suspension was used to successfully validate the system and its feasibility for immunoelectron microscopy. Monoclonal and polyclonal antibodies to a variety of epitopes on the proteoglycan molecule were tested on fresh and fixed plugs cored from chondron-agarose gels. Plugs were immunolabeled with peroxidase-diaminobenzidine before or after digestion with testicular hyaluronidase or chondroitinase ABC. Trypsin/chymotrypsin were used to challenge epitopes of the core protein. The results indicate that epitopes to keratan sulfate, chondroitin sulfate, hyaluronate binding region, and core protein are localized in the chondron. Consistent staining was found in the tail and interconnecting segments between chondrons, whereas staining of the pericellular matrix and capsule adjacent to the chondrocyte varied according to the enzyme pre-treatment employed. We conclude that isolated chondrons are rich in proteoglycan monomer, which is particularly concentrated in the tail and interconnecting segments of the chondron where it could function to protect and stabilize the chondrocyte.  相似文献   

7.
Within articular cartilage, the chondron microenvironment will influence chondrocyte behaviour and response to loading. Chondrons were extracted from intact cartilage using either mechanical homogenisation (MC) or enzymatic digestion (EC) and cell and matrix morphology in unstrained and compressed agarose constructs was examined. Isolated chondrocytes (IC) were used for comparison. Immunolocalisation of type VI collagen and keratan sulphate revealed differences in the structure of the pericellular microenvironment such that MC most closely resembled chondrons in situ. The unstrained cell diameters of IC and EC were larger than MC at day 1 and increased significantly over a 7 day culture period. In contrast, cell diameters for MC remained constant. Compression of constructs at day 1 resulted in cell deformation for IC and EC but not MC. The two chondron extraction methods yielded chondrons of differing matrix morphology and associated differences in cell size and cellular response to load. The results indicate that the pericellular microenvironment of MC initially possessed a greater mechanical integrity than that of EC. Although these differences may be reduced with time in culture, characterisation of mechanically isolated chondrons suggests that the stiffness of the chondrons in situ may be greater than previous estimates.  相似文献   

8.
Within articular cartilage, the chondron microenvironment will influence chondrocyte behaviour and response to loading. Chondrons were extracted from intact cartilage using either mechanical homogenisation (MC) or enzymatic digestion (EC) and cell and matrix morphology in unstrained and compressed agarose constructs was examined. Isolated chondrocytes (IC) were used for comparison. Immunolocalisation of type VI collagen and keratan sulphate revealed differences in the structure of the pericellular microenvironment such that MC most closely resembled chondrons in situ. The unstrained cell diameters of IC and EC were larger than MC at day 1 and increased significantly over a 7 day culture period. In contrast, cell diameters for MC remained constant. Compression of constructs at day 1 resulted in cell deformation for IC and EC but not MC. The two chondron extraction methods yielded chondrons of differing matrix morphology and associated differences in cell size and cellular response to load. The results indicate that the pericellular microenvironment of MC initially possessed a greater mechanical integrity than that of EC. Although these differences may be reduced with time in culture, characterisation of mechanically isolated chondrons suggests that the stiffness of the chondrons in situ may be greater than previous estimates.  相似文献   

9.
The role of the chondrocyte pericellular matrix (PCM) was examined in a three-dimensional chondrocyte culture system to determine whether retention of the native pericellular matrix could stimulate collagen and proteoglycan accumulation and also promote the formation of a mechanically functional hyaline-like neocartilage. Porcine chondrocytes and chondrons, consisting of the chondrocyte with its intact pericellular matrix, were maintained in pellet culture for up to 12 weeks. Sulfated glycosaminoclycans and type II collagen were measured biochemically. Immunocytochemistry was used to examine collagen localization as well as cell distribution within the pellets. In addition, the equilibrium compressive moduli of developing pellets were measured to determine whether matrix deposition contributed to the mechanical stiffness of the cartilage constructs. Pellets increased in size and weight over a 6-week period without apparent cell proliferation. Although chondrocytes quickly rebuilt a PCM rich in type VI collagen, chondron pellets accumulated significantly more proteoglycan and type II collagen than did chondrocyte pellets, indicating a greater positive effect of the native PCM. After 5 weeks in chondron pellets, matrix remodeling was evident by microscopy. Cells that had been uniformly distributed throughout the pellets began to cluster between large areas of interterritorial matrix rich in type II collagen. After 12 weeks, clusters were stacked in columns. A rapid increase in compressive strength was observed between 1 and 3 weeks in culture for both chondron and chondrocyte pellets and, by 6 weeks, both had achieved 25% of the equilibrium compressive stiffness of cartilage explants. Retention of the in vivo PCM during chondrocyte isolation promotes the formation of a mechanically functional neocartilage construct, suitable for modeling the responses of articular cartilage to chemical stimuli or mechanical compression.  相似文献   

10.
The chondron is a distinct structure in articular cartilage that consists of the chondrocyte and its pericellular matrix (PCM), a narrow tissue region surrounding the cell that is distinguished by type VI collagen and a high glycosaminoglycan concentration relative to the extracellular matrix. We present a theoretical mechano-chemical model for the passive volumetric response of an isolated chondron under osmotic loading in a simple salt solution at equilibrium. The chondrocyte is modeled as an ideal osmometer and the PCM model is formulated using triphasic mixture theory. A mechano-chemical chondron model is obtained assuming that the chondron boundary is permeable to both water and ions, while the chondrocyte membrane is selectively permeable to only water. For the case of a neo-Hookean PCM constitutive law, the model is used to conduct a parametric analysis of cell and chondron deformation under hyper- and hypo-osmotic loading. In combination with osmotic loading experiments on isolated chondrons, model predictions will aid in determination of pericellular fixed charge density and its relative contribution to PCM mechanical properties.  相似文献   

11.
The pericellular matrix (PCM) is a narrow region of tissue that completely surrounds chondrocytes in articular cartilage. Previous theoretical models of the "chondron" (the PCM with enclosed cells) suggest that the structure and properties of the PCM may significantly influence the mechanical environment of the chondrocyte. The objective of this study was to quantify changes in the three-dimensional (3D) morphology of the chondron in situ at different magnitudes of compression applied to the cartilage extracellular matrix. Fluorescence immunolabeling for type-VI collagen was used to identify the boundaries of the cell and PCM, and confocal microscopy was used to form 3D images of chondrons from superficial, middle, and deep zone cartilage in explants compressed to 0%, 10%, 30%, and 50% surface-to-surface strain. Lagrangian tissue strain, determined locally using texture correlation, was highly inhomogeneous and revealed depth-dependent compressive stiffness and Poisson's ratio of the extracellular matrix. Compression significantly decreased cell and chondron height and volume, depending on the zone and magnitude of compression. In the superficial zone, cellular-level strains were always lower than tissue-level strains. In the middle and deep zones, however, tissue strains below 25% were amplified at the cellular level, while tissue strains above 25% were decreased at the cellular level. These findings are consistent with previous theoretical models of the chondron, suggesting that the PCM can serve as either a protective layer for the chondrocyte or a transducer that amplifies strain, such that cellular-level strains are more homogenous throughout the tissue depth despite large inhomogeneities in local ECM strains.  相似文献   

12.
The dynamic structure of the pericellular matrix on living cells   总被引:2,自引:0,他引:2       下载免费PDF全文
《The Journal of cell biology》1993,123(6):1899-1907
Although up to several microns thick, the pericellular matrix is an elusive structure due to its invisibility with phase contrast or DIC microscopy. This matrix, which is readily visualized by the exclusion of large particles such as fixed red blood cells is important in embryonic development and in maintenance of cartilage. While it is known that the pericellular matrix which surrounds chondrocytes and a variety of other cells consists primarily of proteoglycans and hyaluronan with the latter binding to cell surface receptors, the macromolecular organization is still speculative. The macromolecular organization previously could not be determined because of the collapse of the cell coat with conventional fixation and dehydration techniques. Until now, there has been no way to study the dynamic arrangement of hyaluronan with its aggregated proteoglycans on living cells. In this study, the arrangement and mobility of hyaluronan-aggrecan complexes were directly observed in the pericellular matrix of living cells isolated from bovine articular cartilage. The complexes were labeled with 30- to 40-nm colloidal gold conjugated to 5-D-4, an antibody to keratan sulfate, and visualized with video-enhanced light microscopy. From our observations of the motion of pericellular matrix macromolecules, we report that the chondrocyte pericellular matrix is a dynamic structure consisting of individual tethered molecular complexes which project outward from the cell surface. These complexes undergo restricted rotation or wobbling. When the cells were cultured with ascorbic acid, which promotes production of matrix components, the size of the cell coat and the position of the gold probes relative to the plasma membrane were not changed. However, the rapidity and extent of the tethered motion were reduced. Treatment with Streptomyces hyaluronidase removed the molecules that displayed the tethered motion. Addition of hyaluronan and aggrecan to hyaluronidase-treated cells yielded the same labeling pattern and tethered motion observed with native cell coats. To determine if aggrecan was responsible for the extended configuration of the complexes, only hyaluronan was added to the hyaluronidase-treated cells. The position and mobility of the hyaluronan was detected using biotinylated hyaluronan binding region (b- HABR) and gold streptavidin. The gold-labeled b-HABR was found only near the cell surface. Based on these observations, the hyaluronan- aggrecan complexes composing the cell coat are proposed to be extended in a brush-like configuration in an analogous manner to that previously described for high density, grafted polymers in good solvents.  相似文献   

13.
WARP is a novel member of the von Willebrand factor A domain superfamily of extracellular matrix proteins that is expressed by chondrocytes. WARP is restricted to the presumptive articular cartilage zone prior to joint cavitation and to the articular cartilage and fibrocartilaginous elements in the joint, spine, and sternum during mouse embryonic development. In mature articular cartilage, WARP is highly specific for the chondrocyte pericellular microenvironment and co-localizes with perlecan, a prominent component of the chondrocyte pericellular region. WARP is present in the guanidine-soluble fraction of cartilage matrix extracts as a disulfide-bonded multimer, indicating that WARP is a strongly interacting component of the cartilage matrix. To investigate how WARP is integrated with the pericellular environment, we studied WARP binding to mouse perlecan using solid phase and surface plasmon resonance analysis. WARP interacts with domain III-2 of the perlecan core protein and the heparan sulfate chains of the perlecan domain I with K(D) values in the low nanomolar range. We conclude that WARP forms macromolecular structures that interact with perlecan to contribute to the assembly and/or maintenance of "permanent" cartilage structures during development and in mature cartilages.  相似文献   

14.
Large and small proteoglycans are essential components of articular cartilage. How to induce chondrocytes to repair damaged cartilage with normal ratios of matrix components after their loss due to degenerative joint disease has been a major research focus. We have developed immortalized human chondrocyte cell lines for examining the regulation of cartilage-specific matrix gene expression. However, the decreased synthesis and deposition of cartilage matrix associated with a rapid rate of proliferation has presented difficulties for further examination at the protein level. In these studies, proteoglycan synthesis was characterized in two chondrocyte cell lines, T/C-28a2 and tsT/AC62, derived, respectively, from juvenile costal and adult articular cartilage, under culture conditions that either promoted or decreased cell proliferation. Analysis of proteo[36S]glycans by Sepharose CL-4B chromatography and SDS-PAGE showed that the large proteoglycan aggrecan and the small, leucine-rich proteoglycans, decorin and biglycan, were produced under every culture condition studied. In monolayer cultures, a high initial cell density and conditions that promoted proliferation (presence of serum for T/C-28a2 cells or permissive temperature for the temperature-sensitive tsT/AC62 cells) favored cell survival and ratios of proteoglycans expected for differentiated chondrocytes. However, the tsT/AC62 cells produced more proteoglycans at the nonpermissive temperature. Culture of cells suspended in alginate resulted in a significant decrease in proteoglycan production in all culture conditions. While the tsT/AC62 cells continued to produce a larger amount of aggrecan than small proteoglycans, the T/C-28a2 cells lost the ability to produce significant amounts of aggrecan in alginate culture. In addition, our data indicate that immortalized chondrocytes may alter their ability to retain pericellular matrix under changing culture conditions, although the production of the individual matrix components does not change. These findings provide critical information that will assist in the development of a reproducible chondrocyte culture model for the study of regulation of proteoglycan biosynthesis in cartilage.  相似文献   

15.
The effect of age on the incorporation of newly synthesized aggrecan into the extracellular matrix of human articular cartilage was investigated. This property was measured in a pulse-chase explant culture system by determining the distribution of radiolabeled molecules ([(35)S]sulfate-labeled) between a nondissociating extract (phosphate-buffered saline), which extracts mainly nonaggregated macromolecules, and a dissociating extract (4 M GnHCl) containing mainly aggrecan that was complexed in situ with hyaluronan. The rate of incorporation of aggrecan into aggregates was much slower in mature cartilage than in tissue obtained from younger individuals. Furthermore, autoradiography showed that in mature cartilage, newly synthesized aggrecan is not transported from the pericellular environment within the first 18 h of chase culture, whereas in immature cartilage, it moves into the intercellular space during the same period, i.e. aggrecan is processed in the extracellular space very differently in young and adult articular cartilage. Experiments were also performed to show that the interaction of link protein with newly synthesized aggrecan depends on the maturity of the G(1) domain of aggrecan. This investigation has shown that the extracellular aggregation of aggrecan in adult human articular cartilage involves a number of intermediate structures. These have not been identified in the very young cartilage obtained from laboratory animals or in porcine and bovine articular cartilage obtained from the abattoir.  相似文献   

16.
In articular cartilage, chondrocytes are surrounded by a pericellular matrix (PCM), which together with the chondrocyte have been termed the "chondron." While the precise function of the PCM is not know there has been considerable speculation that it plays a role in regulating the biomechanical environment of the chondrocyte. In this study, we measured the Young's modulus of the PCM from normal and osteoarthritic cartilage using the micropipette aspiration technique, coupled with a newly developed axisymmetric elastic layered half-space model of the experimental configuration. Viable, intact chondrons were extracted from human articular cartilage using a new microaspiration-based isolation technique. In normal cartilage, the Young's modulus of the PCM was similar in chondrons isolated from the surface zone (68.9 +/- 18.9 kPa) as compared to the middle and deep layers (62.0 +/- 30.5 kPa). However, the mean Young's modulus of the PCM (pooled for the two zones) was significantly decreased in osteoarthritic cartilage (66.5 +/- 23.3 kPa versus 41.3 +/- 21.1 kPa, p < 0.001). In combination with previous theoretical models of cell-matrix interactions in cartilage, these findings suggest that the PCM has an important influence on the stress-strain environment of the chondrocyte that potentially varies with depth from the cartilage surface. Furthermore, the significant loss of PCM stiffness that was observed in osteoarthritic cartilage may affect the magnitude and distribution of biomechanical signals perceived by the chondrocytes.  相似文献   

17.
Osteoarthritis is the most prevalent form of arthritis in the world. Certain signaling pathways, such as the wnt pathway, are involved in cartilage pathology. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to chondrocyte de-differentiation. We investigated whether the Wnt pathway is involved in de-differentiation of human articular chondrocytes in vitro. Human articular chondrocytes were cultured for four passages in the presence or absence of IL-1 in monolayer or micromass culture. Changes in cell morphology were monitored by light microscopy. Protein and gene expression of chondrocyte markers and Wnt pathway components were determined by Western blotting and qPCR after culture. After culturing for four passages, chondrocytes exhibited a fibroblast-like morphology. Collagen type II and aggrecan protein and gene expression decreased, while collagen type I, matrix metalloproteinase 13, and nitric oxide synthase expressions increased. Wnt molecule expression profiles changed; Wnt5a protein expression, the Wnt target gene, c-jun, and in Wnt pathway regulator, sFRP4 increased. Treatment with IL-1 caused chondrocyte morphology to become more filament-like. This change in morphology was accompanied by extinction of col II expression and increased col I, MMP13 and eNOS expression. Changes in expression of the Wnt pathway components also were observed. Wnt7a decreased significantly, while Wnt5a, LRP5, β-catenin and c-jun expressions increased. Culture of human articular chondrocytes with or without IL-1 not only induced chondrocyte de-differentiation, but also changed the expression profiles of Wnt components, which suggests that the Wnt pathway is involved in chondrocyte de-differentiation in vitro.  相似文献   

18.
Experimental studies suggest that the magnitude of chondrocyte deformation is much smaller than expected based on the material properties of extracellular matrix (ECM) and cells, and that this result could be explained by a structural unit, the chondron, that is thought to protect chondrocytes from large deformations in situ. We extended an existing numerical model of chondrocyte, ECM and pericellular matrix (PCM) to include depth-dependent structural information. Our results suggest that superficial zone chondrocytes, which lack a pericellular capsule (PC), are relatively stiff, and therefore are protected from excessive deformations, whereas middle and deep zone chondrocytes are softer but are protected by the PC that limits cell deformations in these regions. We conclude that cell deformations sensitively depend on the immediate structural environment of the PCM in a depth-dependent manner, and that the functional stiffness of chondrocytes in situ is much larger than experiments on isolated cells would suggest.  相似文献   

19.
Initial assembly of extracellular matrix occurs within a zone immediately adjacent to the chondrocyte cell surface termed the cell- associated or pericellular matrix. Assembly within the pericellular matrix compartment requires specific cell-matrix interactions to occur, that are mediated via membrane receptors. The focus of this study is to elucidate the mechanisms of assembly and retention of the cartilage pericellular matrix proteoglycan aggregates important for matrix organization. Assembly of newly synthesized chondrocyte pericellular matrices was inhibited by the addition to hyaluronan hexasaccharides, competitive inhibitors of the binding of hyaluronan to its cell surface receptor. Fully assembled chondrocyte pericellular matrices were displaced using hyaluronan hexasaccharides as well. When exogenous hyaluronan was added to matrix-free chondrocytes in combination with aggrecan, a pericellular matrix equivalent in size to an endogenous matrix formed within 30 min of incubation. Addition of hyaluronan and aggrecan to glutaraldehyde-fixed chondrocytes resulted in matrix assembly comparable to live chondrocytes. These matrices could be inhibited from assembling by the addition of excess hyaluronan hexasaccharides or displaced once assembled by subsequent incubation with hyaluronan hexasaccharides. The results indicate that the aggrecanrich chondrocyte pericellular matrix is not only on a scaffolding of hyaluronan, but actually anchored to the cell surface via the interaction between hyaluronan and hyaluronan receptors.  相似文献   

20.
Latrunculin and cytochalasin decrease chondrocyte matrix retention.   总被引:3,自引:0,他引:3  
The proteoglycan-rich extracellular matrix (ECM) directly associated with the cells of articular cartilage is anchored to the chondrocyte plasma membrane via interaction with the hyaluronan receptor CD44. The cytoplasmic tail of CD44 interacts with the cortical cytoskeleton. The objective of this study was to determine the role of the actin cytoskeleton in CD44-mediated matrix assembly by chondrocytes and cartilage matrix retention and homeostasis. Adult bovine articular cartilage tissue slices and isolated chondrocytes were treated with latrunculin or cytochalasin. Tissues were processed for histology and chondrocytes were examined for CD44 expression and pericellular matrix assembly. Treatments that disrupt the actin cytoskeleton reduced chondrocyte pericellular matrix assembly and the retention of proteoglycan within cartilage explants. There was enhanced detection of a neoepitope resulting from proteolysis of aggrecan. Cytoskeletal disruption did not reduce CD44 expression, as monitored by flow cytometry, but detergent extraction of CD44 was enhanced and hyaluronan binding was decreased. Thus, disruption of the cytoskeleton reduces the anchorage of CD44 in the chondrocyte membrane and the capacity of CD44 to bind its ligand. The results suggest that cytoskeletal disruption within cartilage uncouples chondrocytes from the matrix, resulting in altered metabolism and deleterious changes in matrix structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号