首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a newly developed digital motion analysis video technique to study the effects of nitric oxide (NO) and epinephrine on the early larval arterial and venous vasculature of zebrafish. Application of the NO donor sodium nitroprusside resulted in a significant increase in both the venous and arterial vessel diameters, whereas N(G)-nitro-L-arginine methyl ester caused a significant decrease in the same diameters. Thus our results show that both the venous and arterial vasculature of the 5- and 6-day-old zebrafish larvae are influenced by endogenously produced NO. By use of immunohistochemistry, NO synthase immunoreactivity was demonstrated in endothelial cells of the dorsal vein. Local application of epinephrine onto the dorsal artery had no effect on vessel diameter. However, if the embryos were preincubated with N(omega)-nitro-L-arginine methyl ester, addition of epinephrine resulted in a significant reduction in both arterial and venous vessel diameters. Thus this study provides increasing evidence that before a functional autonomic innervation of the peripheral vascular system, vascular tone in larval tissue is regulated by a complex interaction of vasoactive substances that are produced locally by vascular endothelial cells.  相似文献   

2.
Hemorrhage is a severe manifestation of dengue disease. Virus strain and host immune response have been implicated as the risk factors for hemorrhage development. To delineate the complex interplay between the virus and the host, we established a dengue hemorrhage model in immune-competent mice. Mice inoculated intradermally with dengue virus develop hemorrhage within 3 days. In the present study, we showed by the presence of NS1 antigen and viral nuclei acid that dengue virus actively infects the endothelium at 12 h and 24 h after inoculation. Temporal studies showed that beginning at day 2, there was macrophage infiltration into the vicinity of the endothelium, increased tumor necrosis factor alpha (TNF-alpha) production, and endothelial cell apoptosis in the tissues. In the meantime, endothelial cells in the hemorrhage tissues expressed inducible nitric oxide synthase (iNOS) and nitrotyrosine. In vitro studies showed that primary mouse and human endothelial cells were productively infected by dengue virus. Infection by dengue virus induced endothelial cell production of reactive nitrogen and oxygen species and apoptotic cell death, which was greatly enhanced by TNF-alpha. N(G)-nitro-L-arginine methyl ester and N-acetyl cysteine reversed the effects of dengue virus and TNF-alpha on endothelial cells. Importantly, hemorrhage development and the severity of hemorrhage were greatly reduced in mice lacking iNOS or p47(phox) or treatment with oxidase inhibitor, pointing to the critical roles of reactive nitrogen and oxygen species in dengue hemorrhage.  相似文献   

3.
This study investigated the role of endogenous nitric oxide (NO) in the progression of atherosclerosis in apolipoprotein E-deficient [apoE-knockout (KO)] mice. Mice were treated with N(omega)-nitro-L-arginine methyl ester (L-NAME) an inhibitor of nitric oxide synthase (NOS) or with the NOS substrate L-arginine for 8 wk. L-NAME treatment resulted in a significant inhibition of NO-mediated vascular responses and a significant increase in the atherosclerotic plaque/surface area in the aorta of apoE-KO mice. L-arginine treatment had no influence on endothelial function and did not alter lesion size. Mean arterial blood pressure and serum lipid levels were not altered by the treatments. At the beginning of the study impairment in endothelial function was only apparent in the case of N(G)-nitro-L-arginine-induced, NO-mediated contraction, whereas ACh-induced, NO-mediated relaxation was not different between age-matched apoE-KO and C57Bl/6J mice. After the 8-wk treatment with the NOS inhibitor, both NO-mediated responses were significantly inhibited. The acceleration in lesion size concomitant to the severely impaired NO-mediated responses indicates that lack of endogenous NO is an important progression factor of atherosclerosis in the apoE-KO mouse.  相似文献   

4.
The involvement of nitric oxide (NO), prostaglandins, and calcium-dependent potassium channel (K(Ca)) activators on the negative modulation of phenylephrine-induced contractions was evaluated on the isolated aorta and caudal (CAU) artery obtained from rats treated with ouabain for 5 wk to induce hypertension. In ouabain-treated rats, the reactivity to phenylephrine was reduced in the endothelium-intact aorta but not the CAU segments. Endothelial modulation of phenylephrine contraction, as demonstrated by endothelium removal, NO synthase (NOS) inhibition with N(omega)-nitro-L-arginine methyl ester and aminoguanidine, as well as K(Ca) inhibition with tetraethylammonium, was more pronounced in segments from ouabain-treated animals, and here greater effects were seen in the aorta than in CAU. An increased expression of endothelial NOS and neuronal NOS was seen in the aorta after ouabain treatment. In CAU, only endothelial NOS was detected and ouabain treatment did not alter its expression. These results suggest that ouabain-induced hypertension is accompanied by increased NO release derived from endothelial NOS and neuronal NOS and increased release of an endothelial hyperpolarizing factor that presumably opens K(Ca), all of which contribute to the increased negative modulation of the phenylephrine contraction.  相似文献   

5.
The regulation of vascular wall homeostasis by nitric oxide (NO) generated by endothelium is being intensively studied. In the present paper, the involvement of NO in the vascular endothelial growth factor (VEGF), insulin or leptin-stimulated proliferation of human endothelial cells (HUVEC) was measured by [3H]thymidine or bromodeoxyuridine incorporation. VEGF and insulin, but not leptin, increased NO generation in HUVEC, as detected with ISO-NO electrode. Proliferation of HUVEC induced by leptin was not changed or was higher in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME) a nitric oxide synthase (NOS) inhibitor. In contrast, L-NAME blunted the proproliferative effect of VEGF and insulin. Furthermore, we demonstrated that, in human arterial smooth muscle cells (hASMC) transfected with endothelial NOS (eNOS) gene, the generation of biologically active VEGF protein was NO-dependent. Inhibition of NO generation by L-NAME decreased the synthesis of VEGF protein and attenuated HUVEC proliferation induced by conditioned media from transfected hASMC. Endothelium-derived NO seems to participate in VEGF and insulin, but not leptin, mitogenic activity. Additionally, the small amounts of NO released from endothelial cells, as mimicked by eNOS transfection into hASMC, may activate generation of VEGF in sub-endothelial smooth muscle cells, leading to increased synthesis of VEGF protein necessary for turnover and restitution of endothelial cells.  相似文献   

6.
Inhaled nitric oxide (NO) is a highly selective pulmonary vasodilator. It was recently reported that inhaled NO causes peripheral vasodilatation after treatment with a NO synthase (NOS) inhibitor. These findings suggested the possibility that inhibition of endogenous NOS uncovered the systemic vasodilating effect of NO or NO adducts absorbed via the lungs during NO inhalation. To learn whether inhaled NO reduces systemic vascular resistance in the absence of endothelial NOS, we studied the systemic vascular effects of NO breathing in wild-type mice treated without and with the NOS inhibitor N(omega)-nitro-l-arginine methyl ester and in NOS3-deficient (NOS3(-/-)) mice. During general anesthesia, the cardiac output, left ventricular function, and systemic vascular resistance were not altered by NO breathing at 80 parts/million in both genotypes. Breathing NO in air did not alter blood pressure and heart rate, as measured by tail-cuff and telemetric methods, in either awake wild-type mice (whether or not they were treated with N(omega)-nitro-l-arginine methyl ester), or in awake NOS3(-/-) mice. Our findings suggest that absorption of NO or adducts during NO breathing is insufficient to cause systemic vasodilation in mice, even when endogenous endothelial NO production is congenitally absent.  相似文献   

7.
This study evaluated the effects of progressive nitric oxide (NO) inhibition in the regulation of systemic and regional hemodynamics and renal function in anesthetized dogs. The N(G)-nitro-L-arginine methyl ester group (n = 9) received progressive doses of 0.1, 1, 10, and 50 microg. kg(-1). min(-1). Renal (RBF), mesenteric (MBF), iliac (IBF) blood flows, mean arterial pressure (MAP), pulmonary pressures, cardiac output (CO), and systemic and pulmonary vascular resistances were measured. During N(G)-nitro-L-arginine methyl ester infusion, MAP and systemic vascular resistances increased in a dose-dependent manner. Mean pulmonary pressure and pulmonary vascular resistances increased in both the N(G)-nitro-L-arginine methyl ester and the control group, but the increase was more marked in the N(G)-nitro-L-arginine methyl ester group during the last two infusion periods. CO decreased progressively, before any significant change in blood pressure was noticeable in the N(G)-nitro-L-arginine methyl ester group. IBF decreased significantly from the first N(G)-nitro-L-arginine methyl ester dose, whereas RBF and MBF only decreased significantly during the highest N(G)-nitro-L-arginine methyl ester dose. Urinary volume and sodium excretion only increased significantly in the time control group during the two last time periods. The pulmonary vasculature was more sensitive than the systemic vasculature, whereas skeletal muscle and renal vasculatures showed a greater sensitivity to the inhibition of NO production than the mesenteric vasculature. NO synthesis inhibition induces a progressive antidiuretic and antinatriuretic effect, which is partially offset by the increase in blood pressure.  相似文献   

8.
Lipopolysaccharide (LPS)-regulated contractility in pericytes may play an important role in mediating pulmonary microvascular fluid hemodynamics during inflammation and sepsis. LPS has been shown to regulate inducible nitric oxide (NO) synthase (iNOS) in various cell types, leading to NO generation, which is associated with vasodilatation. The purpose of this study was to test the hypothesis that LPS can regulate relaxation in lung pericytes and to determine whether this relaxation is mediated through the iNOS pathway. As predicted, LPS stimulated NO synthesis and reduced basal tension by 49% (P < 0.001). However, the NO synthase inhibitors N (omega)-nitro-L-arginine methyl ester, aminoguanidine, and N (omega)-monomethyl-L-arginine did not block the relaxation produced by LPS. In fact, aminoguanidine and N (omega)-monomethyl-L-arginine potentiated the LPS response. The possibility that NO might mediate either contraction or relaxation of the pericyte was further investigated through the use of NO donor compounds; however, neither sodium nitroprusside nor S-nitroso-N-acetylpenicillamine had any significant effect on pericyte contraction. The inhibitory effect of aminoguanidine on LPS-stimulated NO production was confirmed. This ability of LPS to inhibit contractility independent of iNOS was also demonstrated in lung pericytes derived from iNOS-deficient mice. This suggests the presence of an iNOS-independent but as yet undetermined pathway by which lung pericyte contractility is regulated.  相似文献   

9.
The presence of immunoreactive inducible nitric oxide synthase molecules (ir-iNOS) is demonstrated in the Lymantria dispar IPLB-LdFB cell line. The maximum ir-iNOS inducibility is observed 18 h after incubation with sodium nitroprusside (SNP). The increase in NO provoked by SNP in turn induces apoptosis. However, this phenomenon is observed only after 48 h. The NOS-inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME) and N-[3-(aminomethyl)-benzyl]acetamide (1400W) were both unable to block the SNP-induced apoptosis at all the concentrations used. Incubation with SNP plus N-acetyl-L-cysteine (NAC) further augmented the percentage of cell death with respect to SNP used alone, and this process is seen earlier, i.e. after 24 h. Moreover, the induction of apoptosis in the presence of NAC is time- and concentration-dependent. The high percentage of cell death with SNP+NAC suggests that NAC forms S-nitrosothiols with NO, resulting in an increase in the bioavailability of NO. In conclusion, these findings show the existence of a close relationship between mammalian and invertebrate cells with regards to SNP and NAC induction and the related NO response.  相似文献   

10.
Eicosapentaenoic acid (EPA), but not its metabolites (docosapentaenoic acid and docosahexaenoic acid), stimulated nitric oxide (NO) production in endothelial cells in situ and induced endothelium-dependent relaxation of bovine coronary arteries precontracted with U46619. EPA induced a greater production of NO, but a much smaller and more transient elevation of intracellular Ca(2+) concentration ([Ca(2+)]i), than did a Ca(2+) ionophore (ionomycin). EPA stimulated NO production even in endothelial cells in situ loaded with a cytosolic Ca(2+) chelator 1,2-bis-o-aminophenoxythamine-N',N',N'-tetraacetic acid, which abolished the [Ca(2+)]i elevations induced by ATP and EPA. The EPA-induced vasorelaxation was inhibited by N(omega)-nitro-L-arginine methyl ester. Immunostaining analysis of endothelial NO synthase (eNOS) and caveolin-1 in cultured endothelial cells revealed eNOS to be colocalized with caveolin in the cell membrane at a resting state, while EPA stimulated the translocation of eNOS to the cytosol and its dissociation from caveolin, to an extent comparable to that of the eNOS translocation induced by a [Ca(2+)]i-elevating agonist (10 microM bradykinin). Thus, EPA induces Ca(2+)-independent activation and translocation of eNOS and endothelium-dependent vasorelaxation.  相似文献   

11.
An increase in the association of heat shock protein 90 (HSP90) with endothelial nitric oxide (NO) synthase (eNOS) is well recognized for increasing NO (NO*) production. Despite the progress in this field, the mechanisms by which HSP90 modulates eNOS remain unclear due, in part, to the fact that geldanamycin (GA) redox cycles to generate superoxide anion (O(2)(-*) and the fact that inhibiting HSP90 with GA or radicicol (RAD) destabilizes tyrosine kinases that rely on the chaperone for maturation. In this report, we determine the extent to which these side effects alter vascular and endothelial cell function in physiologically relevant systems and in cultured endothelial cells. Vascular endothelial growth factor (VEGF)-stimulated vascular permeability, as measured by Evans blue leakage in the ears of male Swiss mice in vivo, and acetylcholine-induced vasodilation of isolated, pressurized mandibular arterioles from male C57BL6 mice ex vivo were attenuated by N(omega)-nitro-L-arginine methyl ester (L-NAME), GA, and RAD. Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate), a slow releasing NO. donor, increased vasodilation of arterioles pretreated with GA, RAD, and L-NAME equally well except at 10(-5) M, the highest concentration used, where vasodilation was greater in pressurized arterioles treated with L-NAME than in arterioles pretreated with GA or RAD alone. Both GA and RAD reduced NO* release from stimulated endothelial cell cultures and increased O(2)(-*) production in the endothelium of isolated aortas by an L-NAME-inhibitable mechanism. Pretreatment with RAD increased stimulated O(2)(-*) production from eNOS, whereas pretreatment with genistein (GE), a broad-spectrum tyrosine kinase inhibitor, did not; however, pretreatment with GE + RAD resulted in a super-induced state of uncoupled eNOS activity upon stimulation. These data suggest that the tyrosine kinases, either directly or indirectly, and HSP90-dependent signaling pathways act in concert to suppress uncoupled eNOS activity.  相似文献   

12.
To test whether nitric oxide (NO) participates in cyclosporine A (CsA)-induced neurotoxicity including convulsions, we examined the effect of an NO synthase inhibitor on convulsions induced by combined treatment with CsA and bicuculline in mice and the effect of CsA on NO production in the dorsal hippocampus using an in vivo microdialysis method in rats. CsA (200 mg/kg, i.p.) significantly increased the intensity of convulsions induced by an intracerebroventricular injection of bicuculline (25 pmol) in mice. This facilitation was blocked by N omega -nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, but not by N omega -nitro-D-arginine methyl ester (D-NAME), an inactive form of L-NAME (10 mg/kg, i.p.). CsA (20-50 mg/kg, i.p.) dose-dependently increased NO 2 - levels in dialysates obtained with microdialysis in the rat dorsal hippocampus. This enhanced NO 2 - formation was blocked by L-NAME but not by D-NAME (50 mg/kg, i.p.). These findings suggest that CsA stimulates NO production and induces convulsions as a result of an interaction between NO and the gamma-aminobutyric acid (GABA) system in the hippocampus.  相似文献   

13.
We examined modulation by nitric oxide (NO) of sympathetic neurotransmitter release and vasoconstriction in the isolated pump-perfused rat kidney. Electrical renal nerve stimulation (RNS; 1 and 2 Hz) increased renal perfusion pressure and renal norepinephrine (NE) efflux. Nonselective NO synthase (NOS) inhibitors [N(omega)-nitro-L-arginine methyl ester (L-NAME) or N(omega)-nitro-L-arginine], but not a selective neuronal NO synthase inhibitor (7-nitroindazole sodium salt), suppressed the NE efflux response and enhanced the perfusion pressure response. Pretreatment with L-arginine prevented the effects of L-NAME on the RNS-induced responses. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), which eliminates NO by oxidizing it to NO(2), suppressed the NE efflux response, whereas the perfusion pressure response was less susceptible to carboxy-PTIO. 8-Bromoguanosine cGMP suppressed and a guanylate cyclase inhibitor [4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one] enhanced the RNS-induced perfusion pressure response, but neither of these drugs affected the NE efflux response. These results suggest that endogenous NO facilitates the NE release through cGMP-independent mechanisms, NO metabolites formed after NO(2) rather than NO itself counteract the vasoconstriction, and neuronal NOS does not contribute to these modulatory mechanisms in the sympathetic nervous system of the rat kidney.  相似文献   

14.
Elevated plasma levels of fat-derived signaling molecules are associated with obesity, vascular endothelial dysfunction, and coronary heart disease; however, little is known about their direct coronary vascular effects. Accordingly, we examined mechanisms by which one adipokine, resistin, affects coronary vascular tone and endothelial function. Studies were conducted in anesthetized dogs and isolated coronary artery rings. Resistin did not change coronary blood flow, mean arterial pressure, or heart rate. Resistin had no effect on acetylcholine-induced relaxation of artery rings; however, resistin did impair bradykinin-induced relaxation. Selective impairment was also observed in vivo, as resistin attenuated vasodilation to bradykinin but not to acetylcholine. Resistin had no effect on dihydroethidium fluorescence, an indicator of superoxide (O(2)(-)) production, and the inhibitory effect of resistin on bradykinin-induced relaxation persisted in the presence of Tempol, a superoxide dismutase mimetic. To determine whether resistin impaired production of and/or responses to nitric oxide (NO) or prostaglandins (e.g., prostacyclin; PGI(2)), we performed experiments with N(omega)-nitro-L-arginine methyl ester (L-NAME) and indomethacin. The effect of resistin to attenuate bradykinin-induced vasodilation persisted in the presence of L-NAME or indomethacin, suggesting resistin may act at a cell signaling point upstream of NO or PGI(2) production. Resistin-induced endothelial dysfunction is not generalized, and it is not consistent with effects mediated by O(2)(-) or interference with NO or PGI(2) signaling. The site of the resistin-induced impairment is unknown but may be at the bradykinin receptor or a closely associated signal transduction machinery proximal to NO synthase or cyclooxygenase.  相似文献   

15.
Nitric oxide and cerebral blood flow responses to hyperbaric oxygen.   总被引:5,自引:0,他引:5  
We have tested the hypothesis that cerebral nitric oxide (NO) production is involved in hyperbaric O(2) (HBO(2)) neurotoxicity. Regional cerebral blood flow (rCBF) and electroencephalogram (EEG) were measured in anesthetized rats during O(2) exposure to 1, 3, 4, and 5 ATA with or without administration of the NO synthase inhibitor (N(omega)-nitro-L-arginine methyl ester), L-arginine, NO donors, or the N-methyl-D-aspartate receptor inhibitor MK-801. After 30 min of O(2) exposure at 3 and 4 ATA, rCBF decreased by 26-39% and by 37-43%, respectively, and was sustained for 75 min. At 5 ATA, rCBF decreased over 30 min in the substantia nigra by one-third but, thereafter, gradually returned to preexposure levels, preceding the onset of EEG spiking activity. Rats pretreated with N(omega)-nitro-L-arginine methyl ester and exposed to HBO(2) at 5 ATA maintained a low rCBF. MK-801 did not alter the cerebrovascular responses to HBO(2) at 5 ATA but prevented the EEG spikes. NO donors increased rCBF in control rats but were ineffective during HBO(2) exposures. The data provide evidence that relative lack of NO activity contributes to decreased rCBF under HBO(2), but, as exposure time is prolonged, NO production increases and augments rCBF in anticipation of neuronal excitation.  相似文献   

16.
This study investigated the hypothesis that atrial natriuretic peptide (ANP) responses are mediated by particulate guanylate cyclase in the pulmonary vascular bed of the cat. When tone in the pulmonary vascular bed was raised to a high steady level with the thromboxane mimic U-46619, injections of ANP caused dose-related decreases in lobar arterial pressure. After administration of HS-142-1, an ANP-A- and ANP-B-receptor antagonist, vasodilator responses to ANP were reduced. The nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) enhanced ANP vasodilator responses, suggesting that inhibition of NO modulates ANP responses. L-NAME administration with constant 8-bromo-cGMP infusion attenuated the increased vasodilator response to ANP, suggesting that supersensitivity to ANP occurs upstream to activation of a cGMP-dependent protein kinase. In pulmonary arterial rings, ANP produced concentration-related vasorelaxant responses with and without endothelium. Methylene blue, L-NAME, or N(omega)-monomethyl-L-arginine did not alter ANP vasorelaxant responses. These data show that ANP supersensitivity observed in the intact pulmonary vascular bed is not seen in isolated pulmonary arterial segments, suggesting that it may only occur in resistance vessel elements. These results suggest that ANP responses occur through activation of ANP-A and/or -B receptors in an endothelium-independent manner and are modulated by NO in resistance vessel elements in the pulmonary vascular bed of the cat.  相似文献   

17.
Hyperglycemia is a major cause of diabetic vascular disease. High glucose can induce reactive oxygen species (ROS) and nitric oxide (NO) generation, which can subsequently induce endothelial dysfunction. High glucose is also capable of triggering endothelial cell apoptosis. Little is known about the molecular mechanisms and the role of ROS and NO in high glucose-induced endothelial cell apoptosis. This study was designed to determine the involvement of ROS and NO in high glucose-induced endothelial cell apoptosis. Expression of endothelial nitric oxide synthase (eNOS) protein and apoptosis were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to control-level (5.5 mM) and high-level (33 mM) glucose at various periods (e.g., 2, 12, 24, 48 h). We also examined the effect of high glucose on H(2)O(2) production using flow cytometry. The results showed that eNOS protein expression was up-regulated by high glucose exposure for 2-6 h and gradually reduced after longer exposure in HUVECs. H(2)O(2) production and apoptosis, which can be reversed by vitamin C and NO donor (sodium nitroprusside), but enhanced by NOS inhibitor (N(G)-nitro-L-arginine methyl ether), were collated to a different time course (24-48 h) to HUVECs. These results provide the molecular basis for understanding that NO plays a protective role from apoptosis of HUVECs during the early stage (<24 h) of high glucose exposure, but in the late stage (>24 h), high glucose exposure leads to the imbalance of NO and ROS, resulting to the observed apoptosis. This may explain, at least in part, the impaired endothelial function and vascular complication of diabetic mellitus that would occur at late stages.  相似文献   

18.
19.
Endothelial dysfunction and increased arterial stiffness contribute to multiple vascular diseases and are hallmarks of cardiovascular aging. To investigate the effects of aging on shear stress-induced endothelial nitric oxide (NO) signaling and aortic stiffness, we studied young (3-4 mo) and old (22-24 mo) rats in vivo and in vitro. Old rat aorta demonstrated impaired vasorelaxation to acetylcholine and sphingosine 1-phosphate, while responses to sodium nitroprusside were similar to those in young aorta. In a customized flow chamber, aortic sections preincubated with the NO-sensitive dye, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, were subjected to steady-state flow with shear stress increase from 0.4 to 6.4 dyn/cm(2). In young aorta, this shear step amplified 4-amino-5-methylamino-2',7'-difluorofluorescein fluorescence rate by 70.6 +/- 13.9%, while the old aorta response was significantly attenuated (23.6 +/- 11.3%, P < 0.05). Endothelial NO synthase (eNOS) inhibition, by N(G)-monomethyl-l-arginine, abolished any fluorescence rate increase. Furthermore, impaired NO production was associated with a significant reduction of the phosphorylated-Akt-to-total-Akt ratio in aged aorta (P < 0.05). Correspondingly, the phosphorylated-to-total-eNOS ratio in aged aortic endothelium was markedly lower than in young endothelium (P < 0.001). Lastly, pulse wave velocity, an in vivo measure of vascular stiffness, in old rats (5.99 +/- 0.191 m/s) and in N(omega)-nitro-l-arginine methyl ester-treated rats (4.96 +/- 0.118 m/s) was significantly greater than that in young rats (3.64 +/- 0.068 m/s, P < 0.001). Similarly, eNOS-knockout mice demonstrated higher pulse wave velocity than wild-type mice (P < 0.001). Thus impaired Akt-dependent NO synthase activation is a potential mechanism for decreased NO bioavailability and endothelial dysfunction, which likely contributes to age-associated vascular stiffness.  相似文献   

20.
Nitric oxide (NO) is released into nasal air, but its function is unknown. We hypothesized that nasal vascular tone and/or flow influences temperature conditioning of nasal air and that NO participates in this process. We measured nasal air temperature (via a thermocouple) and exhaled nasal NO release (by chemiluminescence) in five humans and examined the effects of an aerosolized vasoconstrictor (oxymetazoline), a vasodilator (papaverine), N(G)-nitro-L-arginine methyl ester, an inhibitor of NO synthase, or saline (control). Compared with saline (which caused no changes in nasal air temperature or exhaled NO release), oxymetazoline (0.05%) reduced nasal air temperature and NO release (130.8 +/- 15.1 to 81.3 +/- 12.8 nl. min(-1). m(-2); P < 0.01). Papaverine (0.01 M) increased nasal air temperature and NO release (131.8 +/- 13.1 to 157.2 +/- 17.4 nl. min(-1). m(-2); P < 0.03). N(G)-nitro-L-arginine methyl ester reduced nasal air temperature and NO release (123.7 +/- 14.2 to 44.2 +/- 23.7 nl. min(-1). m(-2); P < 0.01). The results suggest that vascular tone and/or flow modulates temperature conditioning and that NO may participate in that function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号