首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agar medium for differential enumeration of lactic streptococci   总被引:4,自引:4,他引:0       下载免费PDF全文
An agar medium containing arginine and calcium citrate as specific substrates, diffusible (K2HPO4) and undiffusible (CaCO3) buffer systems, and bromocresol purple as the pH indicator was developed to differentiate among lactic streptococci in pure and mixed cultures. Milk was added as the sole source of carbohydrate (lactose) and to provide growth-stimulating factors. Production of acid from lactose caused developing bacterial colonies to seem yellow. Subsequent arginine utilization by Streptococcus lactis and S. diacetilactis liberated ammonia, resulting in a localized pH shift back toward neutrality and a return of the original purple indicator hue. The effects of production of acid from lactose and ammonia were fixed around individual colonies by the buffering capacity of CaCO3. After 36 hr at 32 C in a candle oats jar, colonies of S. cremoris were yellow, whereas colonies of S. lactis and S. diacetilactis were white. S. diacetilactis, on further incubation, utilized suspended calcium citrate, and, after 6 days, the citrate-degrading colonies exhibited clear zoning against a turbid background, making them easily distinguishable from the colonies of the other two species. The medium proved suitable for quantitative differential enumeration when compared with another widely used general agar medium for lactic streptococci.  相似文献   

2.
We have compared the proteomic profiles of L. lactis subsp. cremoris NCDO763 growing in the synthetic medium M17Lac, skim milk microfiltrate (SMM), and skim milk. SMM was used as a simple model medium to reproduce the initial phase of growth of L. lactis in milk. To widen the analysis of the cytoplasmic proteome, we used two different gel systems (pH ranges of 4 to 7 and 4.5 to 5.5), and the proteins associated with the cell envelopes were also studied by two-dimensional electrophoresis. In the course of the study, we analyzed about 800 spots and identified 330 proteins by mass spectrometry. We observed that the levels of more than 50 and 30 proteins were significantly increased upon growth in SMM and milk, respectively. The large redeployment of protein synthesis was essentially associated with an activation of pathways involved in the metabolism of nitrogenous compounds: peptidolytic and peptide transport systems, amino acid biosynthesis and interconversion, and de novo biosynthesis of purines. We also showed that enzymes involved in reactions feeding the purine biosynthetic pathway in one-carbon units and amino acids have an increased level in SMM and milk. The analysis of the proteomic data suggested that the glutamine synthetase (GS) would play a pivotal role in the adaptation to SMM and milk. The analysis of glnA expression during growth in milk and the construction of a glnA-defective mutant confirmed that GS is an essential enzyme for the development of L. lactis in dairy media. This analysis thus provides a proteomic signature of L. lactis, a model lactic acid bacterium, growing in its technological environment.  相似文献   

3.
A chromosomal fragment of 6.7 megadaltons (MDa), apparently containing the genes for milk protein utilization by Streptococcus lactis subsp. lactis SSL135, was cloned in S. lactis subsp. lactis MG1614, a proteinase-negative strain. For the cloning, the chromosomal DNA of SSL135 was cleaved with restriction enzyme BamHI and the resulting fragments were ligated to the single BclI site of pVS2, a 3.3-MDa chloramphenicol-erythromycin double-resistance plasmid constructed in this laboratory. S. lactis subsp. lactis MG1614 was transformed by using this ligation mixture and selecting for chloramphenicol resistance and growth in citrated milk medium. One clone containing a 10.0-MDa plasmid, subsequently designated as pVS6, was chosen for further studies. Despite the lack of homology with previously characterized proteinase genes of lactic streptococci, the cloned insert consistently conveyed the ability to grow in milk to proteinase-negative recipients in repeated transformation experiments. The genetic evidence suggests that the main part of the gene(s) for the proposed proteinase activity is located within a 3.8-MDa BglII fragment of the clone.  相似文献   

4.
Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 °C, while incubation at 40 °C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51000 units ml–1 and 25000 units ml–1, respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.  相似文献   

5.
When lactic streptococci were embedded in agar gels and incubated at 30°C, the end products of carbohydrate fermentation depended on the initial cell density, which determined the subsequent distribution and size of colonies in the gel. With high initial cell densities, microcolonies formed close together and lactose and glucose were converted almost entirely to lactate. However, inoculation with a small number of cells, which then grew to form widely spaced and comparatively large colonies, resulted in up to 30% diversion of end product, usually to formate, ethanol, and acetate. In these “low-colony-density” gel cultures, the initial rate of fermentation was exponential and only lactate was formed. However, this rate then became linear and fermentation became progressively more heterolactic. Streptococcus lactis ML8 was the only strain among the 10 tested which remained homolactic. Incubation at temperatures either above or below the optimum for growth and metabolism decreased the diversion to end products other than lactate. The change from homo- to heterolactic fermentation appears to be caused by carbohydrate depletion in the vicinity of the colony, so that fermentation is then limited by the diffusion of substrate. Growth of cells on gel surfaces exposed to air resulted in up to 40% diversion of end product from lactate, mainly to CO2, acetoin, 2,3-butanediol, and acetate. Six of the 12 Streptococcus cremoris strains tested remained homolactic under these aerobic conditions, whereas all 8 of the S. lactis strains tested, including ML8, were heterolactic.  相似文献   

6.
Fructose transport in lactococci is mediated by two phosphotransferase systems (PTS). The constitutive mannose PTS has a broad specificity and may be used for uptake of fructose with a fructose saturation constant (KFru) of 0.89 mM, giving intracellular fructose 6-phosphate. The inducible fructose PTS has a very small saturation constant (KFru, <17 μM), and the fructose 1-phosphate produced enters the Embden-Meyerhof-Parnas (EMP) pathway as fructose 1,6-diphosphate. Growth in batch cultures of Lactococcus lactis subsp. cremoris FD1 in a yeast extract medium with fructose as the only sugar is poor both with respect to specific growth rate and biomass yield, whereas the specific lactic acid production rate is higher than those in similar fermentations on other sugars metabolized via the EMP pathway, e.g., glucose. In fructose-limited chemostat cultures, the biomass concentration exhibits a strong correlation with the dilution rate, and starting a continuous culture at the end of a batch fermentation leads to large and persistent oscillations in the biomass concentration and specific lactic acid production rate. Two proposed mechanisms underlying this strange growth pattern follow. (i) Fructose transported via the fructose PTS cannot be converted into essential biomass precursors (glucose 6-phosphate or fructose 6-phosphate), because L. lactis subsp. cremoris FD1 is devoid of fructose 1,6-diphosphatase activity. (ii) The fructose PTS apparently produces a metabolite (presumably fructose 1-phosphate) which exerts catabolite repression of both mannose PTS and lactose PTS. Since the repressed mannose PTS and lactose PTS are shown to have identical maximum molar transport rates, the results indicate that it is the general PTS proteins which are repressed.  相似文献   

7.
Ten γ-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) strains were isolated from kimchi and yoghurt. The strain B, isolated from kimchi showed the highest GABA-producing ability (3.68 g/L) in MRS broth with 1% monosodium glutamate (MSG). Strain B was identified as Lactococcus lactis subsp. lactis. The GABA-producing ability of L. lactis B was investigated using brown rice juice, germinated soybean juice and enzymolyzed skim milk as medium compositions. The D-optimal mixture design was applied to optimize the ratio of the three kinds of components in the media. The results showed that when the mixing ratio of brown rice juice, germinated soybean juice and enzymolyzed skim milk was 33:58:9 (v:v:v), the maximum GABA yield of L. lactis B was 6.41 g/L.  相似文献   

8.
Batch and chemostat cultures of Streptococcus cremoris HP and Streptococcus lactis 829 were examined for lactose-hegative (lac-)mutants on indicator agar. In batch cultures, S. cremoris HP gave less than 1% of the total count as lac- colonies while S. lactis 829 consistently contained about 15% of the total as lac- colonies. In chemostat cultures of S. cremoris HP in 2% skim milk containing casamino acids and yeast extract (0.1% each), the percentage of lac- colonies increased markedly when the temperature of growth was 18 degrees C but not when the temperature of growth was 25 degrees C. The percentage of lac- colonies in chemostat cultures in the skim milk medium at 25 degrees C was about the same as that in batch cultures. On the other hand, when chemostat cultures of S. lactis 829 in the skim milk medium were grown at several temperatures between 18 and 33 degrees C, the percentage of lac- colonies was markedly lower than that found in batch cultures of this organism. Cultivation of S. cremoris HP in chemostats with yeast extract-glucose broth at low temperature (18 degrees C) resulted in a selection of cells giving lac- colonies and atypical (small) lac+ colonies. The results show that cultivation of S. cremoris HP and S. lactis 829 in chemostats sometimes gave rise to altered populations. Conditions causing a change in one organism did not necessarily cause a similar change in the other. The results indicate that the successful propagation of lactic streptococci in chemostats for use as starter cultures in the dairy industry will require the careful establishment of optimum conditions for every strain so as to minimize the possible selection of undesirable populations.  相似文献   

9.
Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.  相似文献   

10.
The conjugative transposon Tn919, originally isolated in Streptococcus sanguis FC1, is capable of low-frequency transfer (10−7 and 10−8 per recipient) on membrane filters to a wide number of streptococcal recipients including the industrially important lactic streptococci. The introduction of pMG600 (Lac+ Lax; a lactose plasmid capable of conjugative transfer at high frequencies and which, in certain hosts, confers an unusual clumping phenotype) into a Streptococcus lactis CH919 donor, generating S. lactis CH001, resulted in a significant improvement in the transfer frequency of Tn919 to S. lactis CK50 (1.25 × 10−4 per recipient). In addition, these matings could be performed on agar surfaces, allowing the recovery of a greater number of recipients than with filter matings. Tn919 also transferred at high frequency to S. lactis subsp. diacetylactis 18-16S but not to Streptococcus cremoris strains. Insertion in 18-16S transconjugants generated from filter matings with an S. lactis CH919 donor was random, occurring at different sites on the chromosome and also in plasmid DNA. Thus, the conditions necessary for the practical exploitation of Tn919 in the targeting and cloning of genes from a member of the lactic streptococci, namely, high-frequency delivery and random insertion in host DNA, were achieved.  相似文献   

11.
The behavior of Bifidobacterium animalis subsp. lactis Bb 12 under batch cultivation, after continuous culturing for up to 12 d, was monitored in skim milk-based media. Previous continuous culture for longer than 6 d affected the physiology of said microorganism. The minimum inhibitory concentrations of lactic and acetic acids increased from 18 to 26 g/l, whereas the molar ratio of acetic to lactic acid increased from 0.8 to 1.55, when the previous continuous culture increased its duration from 1 to 12 d. The specific lactose consumption rate decreased from 0.94 to 0.77 glactose/gcell dry mass/h within the batch culture timeframe; this was concomitant with greater amounts of acetic and formic acids, and lower amounts of lactic acid produced. The β-galactosidase activity increased as continuous culturing time increased, and reached 446 units/ml by 12 d; however, the rate of enzyme synthesis decreased concomitantly. Succinic acid was produced during the exponential growth and stationary phases of the batch culture, but the former at exponential growth phase was higher as the continuous culturing time was longer. For comparison purposes, batch cultivation of samples taken from continuous cultures by 1 and 12 d was done using a semi-synthetic medium with glucose as carbon source; a pattern similar to that observed when using skim milk-based media was observed.  相似文献   

12.
Deoxyribonucleic Acid Homology Among Lactic Streptococci   总被引:10,自引:8,他引:2       下载免费PDF全文
A comparison was made by deoxyribonucleic acid homology of 45 strains of lactic streptococci, using two strains of Streptococcus cremoris and three strains of Streptococcus lactis as reference strains. All S. cremoris strains were grouped together by deoxyribonucleic acid homology. S. lactis strains formed a second group, except that three strains of S. lactis showed a high degree of homology with S. cremoris strains. The three Streptococcus diacetylactis strains could not be differentiated from S. lactis strains. In spite of these differences between S. lactis and S. cremoris strains, the majority of S. cremoris, S. lactis, and S. diacetylactis strains studied had at least 50% of their base sequences in common. In contrast, Streptococcus thermophilus strains generally showed little relationship with the other strains of lactic streptococci. The relevance of these findings to the selection of starter strains for cheese making is discussed.  相似文献   

13.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

14.
Mature skim milk cultures of Streptococcus lactis var. maltigenes were steam distilled at low temperature under reduced pressure. Ethyl ether extracts were prepared from the distillates and analyzed by gas-liquid chromatography and mass spectrometry. Twenty of 31 components detected in the culture distillates were identified positively and 11 tentatively, whereas 10 of 19 components detected in the heated skim milk control were identified positively and 9 tentatively. Among components detected in the culture distillate, but not detected in the heated skim milk distillate, and which have not been previously identified in milk cultures of the organism were phenylacetaldehyde and phenethanol. Quantitative analyses of the volatiles entrained from milk cultures of several strains of S. lactis var. maltigenes revealed a probable relationship between variation in the character of the aroma of the cultures and the alcohol/aldehyde ratio.  相似文献   

15.
Strains of lactic streptococci isolated from samples of raw milk which had developed a malty aroma were subjected to the cultural, physiological, and serological tests commonly employed in the classification of streptococci. None of the strains could be differentiated from Streptococcus lactis by these tests. Resting cells of strains which produced an organoleptically detectable malty aroma when cultured in milk were usually found to possess an active α-ketoacid decarboxylase, indicating the presence of the mechanism responsible for the characteristic aroma production. This decarboxylase activity was either weak or nonexistent in the nonmalty strains, and no activity was detected in known strains of S. lactis, S. cremoris, or S. diacetilactis. The malty strains usually produced higher acidities in milk than did the nonmalty strains, and, in most instances, they developed a granular type of growth sediment in broth, as opposed to a viscid sediment. Many of them gave weakly positive Voges-Proskauer tests in glucose broth with or without added citrate and appeared to be somewhat more resistant to nisin than the nonmalty strains.  相似文献   

16.
Streptococcus lactis and Bacteroides sp., isolated from hindguts of Reticulitermes flavipes termites, were grown anaerobically in monoculture and coculture. When grown in a glucose medium, S. lactis monoculture produced lactate as the major fermentation product, with small amounts of formate, acetate, ethanol, and CO2. In coculture, glucose was completely consumed during growth of S. lactis. Lactate, produced by S. lactis, then supported much of the growth of Bacteroides and was fermented to propionate, acetate, and CO2. Small amounts of succinate were formed during growth of Bacteroides in the coculture, but little change in the formate or ethanol concentration was observed. Monoculture growth of Bacteroides in a tryptone-yeast extract medium revealed that incorporation of 20 to 40 mM lactate increased cell yields and production of organic acids. However, initial lactate concentrations greater than 40 mM suppressed not only growth of Bacteroides but also acidic product formation. Results suggest that cross-feeding of lactate between streptococci and bacteroides constitutes one aspect of the overall hindgut fermentation in termites.  相似文献   

17.
Three single-strain cultures, Streptococcus lactis C2, S. cremoris R1, and S. diacetilactis DRC2, were frozen and stored in skim milk, in skim milk containing apple juice, and in skim milk containing one of the following additives: glycerol (10%, v/v), dimethyl sulfoxide (10%, v/v), l-malic acid (0.5 and 2.0%, w/v), acetamide (0.5 and 2.0%, w/v), or succinimide (0.5 and 2.0%, w/v). Cultures were frozen and stored at -23.3 C, frozen and stored at -196 C in liquid nitrogen, or frozen at -196 C and stored at -23.3 C. Cultures frozen and stored at -196 C in liquid nitrogen gave the greatest recovery of viable cells. The number of cells surviving after storage at -23.3 C was greater when the cells had been frozen in liquid N2 than when they had been frozen at -23.3 C. All strains stored at -23.3 C showed a decrease in numbers of surviving cells; additives, particularly l-malic acid and apple juice, were advantageous in preserving the viability of the S. lactis C2 and S. cremoris R1 strains, but had little or no effect on the survival of S. diacetilactis DRC2. l-Malic acid and apple juice stimulated acid production for all cultures in activity tests following incubation after thawing, whereas glycerol and dimethyl sulfoxide retarded its development.  相似文献   

18.
Kluyveromyces marxianus CBS 6164 cells, free or immobilized in Ca-alginate (2%) beads, are able to consume more than 99% of the skim milk lactose in anaerobic conditions. In batches at 30 °C, the lactose consumption after 3.5 h of skim milk fermentation by 30 and 50 g free K. marxianus cells per liter was around 99 and 99.6% respectively, with an approximate conversion of lactose to ethanol and CO2 of 80%. The immobilized cells, easy to handle and showing a faster and easier separation from the fermented medium compared to the free ones, were used in more than 23 batches (cycles of re-use) without losing their activity.  相似文献   

19.
The behavior of Bifidobacterium animalis subsp. lactis Bb 12 under batch cultivation, after continuous culturing for up to 12 d, was monitored in skim milk-based media. Previous continuous culture for longer than 6 d affected the physiology of said microorganism. The minimum inhibitory concentrations of lactic and acetic acids increased from 18 to 26 g/l, whereas the molar ratio of acetic to lactic acid increased from 0.8 to 1.55, when the previous continuous culture increased its duration from 1 to 12 d. The specific lactose consumption rate decreased from 0.94 to 0.77 glactose/gcell dry mass/h within the batch culture timeframe; this was concomitant with greater amounts of acetic and formic acids, and lower amounts of lactic acid produced. The β-galactosidase activity increased as continuous culturing time increased, and reached 446 units/ml by 12 d; however, the rate of enzyme synthesis decreased concomitantly. Succinic acid was produced during the exponential growth and stationary phases of the batch culture, but the former at exponential growth phase was higher as the continuous culturing time was longer. For comparison purposes, batch cultivation of samples taken from continuous cultures by 1 and 12 d was done using a semi-synthetic medium with glucose as carbon source; a pattern similar to that observed when using skim milk-based media was observed.  相似文献   

20.
Lactic acid bacteria, such as Lactococcus lactis, are attractive hosts for the production of plant-bioactive compounds because of their food grade status, efficient expression, and metabolic engineering tools. Two genes from strawberry (Fragaria x ananassa), encoding an alcohol acyltransferase (SAAT) and a linalool/nerolidol synthase (FaNES), were cloned in L. lactis and actively expressed using the nisin-induced expression system. The specific activity of SAAT could be improved threefold (up to 564 pmol octyl acetate h−1 mg protein−1) by increasing the concentration of tRNA1Arg, which is a rare tRNA molecule in L. lactis. Fermentation tests with GM17 medium and milk with recombinant L. lactis strains expressing SAAT or FaNES resulted in the production of octyl acetate (1.9 μM) and linalool (85 nM) to levels above their odor thresholds in water. The results illustrate the potential of the application of L. lactis as a food grade expression platform for the recombinant production of proteins and bioactive compounds from plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号