共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Rough sets and genetic algorithms in learning cellular neural networks cloning template for decision making system 总被引:1,自引:0,他引:1
We purpose to find a new beneficial method for accelerating the Decision-Making and classifier support applied on imprecise data. This acceleration can be done by integration between Rough Sets theory, which gives us the minimal set of decision rules, and the Cellular Neural Networks. Our method depends on Genetic Algorithms for designing the cloning template for more accuracy. Some illustrative examples are given to demonstrate the effectiveness of the proposed method, whose advantages and limitations are also discussed. 相似文献
3.
Backpropagation, which is frequently used in Neural Network training, often takes a great deal of time to converge on an acceptable solution. Momentum is a standard technique that is used to speed up convergence and maintain generalization performance. In this paper we present the Windowed Momentum algorithm, which increases speedup over Standard Momentum. Windowed Momentum is designed to use a fixed width history of recent weight updates for each connection in a neural network. By using this additional information, Windowed Momentum gives significant speedup over a set of applications with same or improved accuracy. Windowed Momentum achieved an average speedup of 32% in convergence time on 15 data sets, including a large OCR data set with over 500,000 samples. In addition to this speedup, we present the consequences of sample presentation order. We show that Windowed Momentum is able to overcome these effects that can occur with poor presentation order and still maintain its speedup advantages. 相似文献
4.
In this paper, we propose a successive learning method in hetero-associative memories, such as Bidirectional Associative Memories and Multidirectional Associative Memories, using chaotic neural networks. It can distinguish unknown data from the stored known data and can learn the unknown data successively. The proposed model makes use of the difference in the response to the input data in order to distinguish unknown data from the stored known data. When input data is regarded as unknown data, it is memorized. Furthermore, the proposed model can estimate and learn correct data from noisy unknown data or incomplete unknown data by considering the temporal summation of the continuous data input. In addition, similarity to the physiological facts in the olfactory bulb of a rabbit found by Freeman are observed in the behavior of the proposed model. A series of computer simulations shows the effectiveness of the proposed model. 相似文献
5.
A new learning algorithm for space invariant Uncoupled Cellular Neural Network is introduced. Learning is formulated as an optimization problem. Genetic Programming has been selected for creating new knowledge because they allow the system to find new rules both near to good ones and far from them, looking for unknown good control actions. According to the lattice Cellular Neural Network architecture, Genetic Programming will be used in deriving the Cloning Template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown. 相似文献
6.
MOTIVATION: Inferring genetic networks from time-series expression data has been a great deal of interest. In most cases, however, the number of genes exceeds that of data points which, in principle, makes it impossible to recover the underlying networks. To address the dimensionality problem, we apply the subset selection method to a linear system of difference equations. Previous approaches assign the single most likely combination of regulators to each target gene, which often causes over-fitting of the small number of data. RESULTS: Here, we propose a new algorithm, named LEARNe, which merges the predictions from all the combinations of regulators that have a certain level of likelihood. LEARNe provides more accurate and robust predictions than previous methods for the structure of genetic networks under the linear system model. We tested LEARNe for reconstructing the SOS regulatory network of Escherichia coli and the cell cycle regulatory network of yeast from real experimental data, where LEARNe also exhibited better performances than previous methods. AVAILABILITY: The MATLAB codes are available upon request from the authors. 相似文献
7.
Background
Discovering causal genetic variants from large genetic association studies poses many difficult challenges. Assessing which genetic markers are involved in determining trait status is a computationally demanding task, especially in the presence of gene-gene interactions.Results
A non-parametric Bayesian approach in the form of a Bayesian neural network is proposed for use in analyzing genetic association studies. Demonstrations on synthetic and real data reveal they are able to efficiently and accurately determine which variants are involved in determining case-control status. By using graphics processing units (GPUs) the time needed to build these models is decreased by several orders of magnitude. In comparison with commonly used approaches for detecting interactions, Bayesian neural networks perform very well across a broad spectrum of possible genetic relationships.Conclusions
The proposed framework is shown to be a powerful method for detecting causal SNPs while being computationally efficient enough to handle large datasets.Electronic supplementary material
The online version of this article (doi:10.1186/s12859-014-0368-0) contains supplementary material, which is available to authorized users. 相似文献8.
9.
Halici U 《Bio Systems》2001,63(1-3):21-34
The reinforcement learning scheme proposed in Halici (J. Biosystems 40 (1997) 83) for the random neural network (RNN) (Neural Computation 1 (1989) 502) is based on reward and performs well for stationary environments. However, when the environment is not stationary it suffers from getting stuck to the previously learned action and extinction is not possible. To overcome the problem, the reinforcement scheme is extended in Halici (Eur. J. Oper. Res., 126(2000) 288) by introducing a new weight update rule (E-rule) which takes into consideration the internal expectation of reinforcement. Although the E-rule is proposed for the RNN, it can be used for training learning automata or other intelligent systems based on reinforcement learning. This paper looks into the behavior of the learning scheme with internal expectation for the environments where the reinforcement is obtained after a sequence of cascaded decisions. The simulation results have shown that the RNN learns well and extinction is possible even for the cases with several decision steps and with hundreds of possible decision paths. 相似文献
10.
Even though individual-based models (IBMs) have become very popular in ecology during the last decade, there have been few attempts to implement behavioural aspects in IBMs. This is partly due to lack of appropriate techniques. Behavioural and life history aspects can be implemented in IBMs through adaptive models based on genetic algorithms and neural networks (individual-based-neural network-genetic algorithm, ING). To investigate the precision of the adaptation process, we present three cases where solutions can be found by optimisation. These cases include a state-dependent patch selection problem, a simple game between predators and prey, and a more complex vertical migration scenario for a planktivorous fish. In all cases, the optimal solution is calculated and compared with the solution achieved using ING. The results show that the ING method finds optimal or close to optimal solutions for the problems presented. In addition it has a wider range of potential application areas than conventional techniques in behavioural modelling. Especially the method is well suited for complex problems where other methods fail to provide answers. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
11.
Masa-aki Sato 《Biological cybernetics》1990,62(3):237-241
A new learning algorithm is described for a general class of recurrent analog neural networks which ultimately settle down to a steady state. Recently, Pineda (Pineda 1987; Almeida 1987; Ikeda et al. 1988) has introduced a learning rule for the recurrent net in which the connection weights are adjusted so that the distance between the stable outputs of the current system and the desired outputs will be maximally decreased. In this method, many cycles are needed in order to get a target system. In each cycle, the recurrent net is run until it reaches a stable state. After that, the weight change is calculated by using a linearized recurrent net which receives the current error of the system as a bias input. In the new algorithm the weights are changed so that the total error of neuron outputs over the entire trajectory is minimized. The weights are adjusted in real time when the network is running. In this method, the trajectory to the target system can be controlled, whereas Pineda's algorithm only controls the position of the fixed point. The relation to the back propagation method (Hinton et al. 1986) is also discussed. 相似文献
12.
In this paper, an improved and much stronger RNH-QL method based on RBF network and heuristic Q-learning was put forward for route searching in a larger state space. Firstly, it solves the problem of inefficiency of reinforcement learning if a given problem’s state space is increased and there is a lack of prior information on the environment. Secondly, RBF network as weight updating rule, reward shaping can give an additional feedback to the agent in some intermediate states, which will help to guide the agent towards the goal state in a more controlled fashion. Meanwhile, with the process of Q-learning, it is accessible to the underlying dynamic knowledge, instead of the need of background knowledge of an upper level RBF network. Thirdly, it improves the learning efficiency by incorporating the greedy exploitation strategy to train the neural network, which has been testified by the experimental results. 相似文献
13.
14.
Li-Chih Wang Hui-Min Chen Chih-Ming Liu 《Flexible Services and Manufacturing Journal》1995,7(2):147-175
With the growing uncertainty and complexity in the manufacturing environment, most scheduling problems have been proven to be NP-complete and this can degrade the performance of conventional operations research (OR) techniques. This article presents a system-attribute-oriented knowledge-based scheduling system (SAOSS) with inductive learning capability. With the rich heritage from artificial intelligence (AI), SAOSS takes a multialgorithm paradigm which makes it more intelligent, flexible, and suitable than others for tackling complicated, dynamic scheduling problems. SAOSS employs an efficient and effective inductive learning method, a continuous iterative dichotomister 3 (CID3) algorithm, to induce decision rules for scheduling by converting corresponding decision trees into hidden layers of a self-generated neural network. Connection weights between hidden units imply the scheduling heuristics, which are then formulated into scheduling rules. An FMS scheduling problem is also given for illustration. The scheduling results show that the system-attribute-oriented knowledge-based approach is capable of addressing dynamic scheduling problems. 相似文献
15.
A selective learning method to improve the generalization of multilayer feedforward neural networks 总被引:1,自引:0,他引:1
Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be predicted. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains: two artificial approximation problems and a real time series prediction problem. Results have been compared to standard backpropagation using the complete training data set and the new method shows better generalization abilities. 相似文献
16.
Yury P. Shimansky 《Biological cybernetics》2009,101(5-6):379-385
Learning processes in the brain are usually associated with plastic changes made to optimize the strength of connections between neurons. Although many details related to biophysical mechanisms of synaptic plasticity have been discovered, it is unclear how the concurrent performance of adaptive modifications in a huge number of spatial locations is organized to minimize a given objective function. Since direct experimental observation of even a relatively small subset of such changes is not feasible, computational modeling is an indispensable investigation tool for solving this problem. However, the conventional method of error back-propagation (EBP) employed for optimizing synaptic weights in artificial neural networks is not biologically plausible. This study based on computational experiments demonstrated that such optimization can be performed rather efficiently using the same general method that bacteria employ for moving closer to an attractant or away from a repellent. With regard to neural network optimization, this method consists of regulating the probability of an abrupt change in the direction of synaptic weight modification according to the temporal gradient of the objective function. Neural networks utilizing this method (regulation of modification probability, RMP) can be viewed as analogous to swimming in the multidimensional space of their parameters in the flow of biochemical agents carrying information about the optimality criterion. The efficiency of RMP is comparable to that of EBP, while RMP has several important advantages. Since the biological plausibility of RMP is beyond a reasonable doubt, the RMP concept provides a constructive framework for the experimental analysis of learning in natural neural networks. 相似文献
17.
González-Camacho JM de Los Campos G Pérez P Gianola D Cairns JE Mahuku G Babu R Crossa J 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2012,125(4):759-771
The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for prediction with dense molecular markers. We illustrate the use of the linear Bayesian LASSO regression model and of two non-linear regression models, reproducing kernel Hilbert spaces (RKHS) regression and radial basis function neural networks (RBFNN) on simulated data and real maize lines genotyped with 55,000 markers and evaluated for several trait-environment combinations. The empirical results of this study indicated that the three models showed similar overall prediction accuracy, with a slight and consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model. Results from the simulated data indicate that RKHS and RBFNN models captured epistatic effects; however, adding non-signal (redundant) predictors (interaction between markers) can adversely affect the predictive accuracy of the non-linear regression models. 相似文献
18.
Artificial neural networks and genetic algorithms are used to model and optimize a fermentation medium for the production of the enzyme hydantoinase by Agrobacterium radiobacter. Experimental data reported in the literature were used to build two neural network models. The concentrations of four medium components served as inputs to the neural network models, and hydantoinase or cell concentration served as a single output of each model. Genetic algorithms were used to optimize the input space of the neural network models to find the optimum settings for maximum enzyme and cell production. Using this procedure, two artificial intelligence techniques have been effectively integrated to create a powerful tool for process modeling and optimization. 相似文献
19.
Masa-aki Sato 《Biological cybernetics》1990,62(3):259-263
20.
An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks 总被引:1,自引:0,他引:1
Recently, a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden-layer feedforward neural networks (SLFNs). It was much faster than the traditional gradient-descent-based learning algorithms due to the analytical determination of output weights with the random choice of input weights and hidden layer biases. However, this algorithm often requires a large number of hidden units and thus slowly responds to new observations. Evolutionary extreme learning machine (E-ELM) was proposed to overcome this problem; it used the differential evolution algorithm to select the input weights and hidden layer biases. However, this algorithm required much time for searching optimal parameters with iterative processes and was not suitable for data sets with a large number of input features. In this paper, a new approach for training SLFNs is proposed, in which the input weights and biases of hidden units are determined based on a fast regularized least-squares scheme. Experimental results for many real applications with both small and large number of input features show that our proposed approach can achieve good generalization performance with much more compact networks and extremely high speed for both learning and testing. 相似文献