首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inflammatory bowel diseases are associated with increased risk of developing colon cancer. A possible role of the pro-inflammatory leukotriene D4 (LTD4) in this process has been implicated by the findings that LTD4 can signal increased proliferation and survival, both hallmarks of a cancer cell, in non-transformed intestinal epithelial cells. Here we make the novel finding that LTD4 can also signal increased motility in these cells. In parallel, we found that LTD4 induced a simultaneous transient 10-fold increase in Rac but not Cdc42 activity. These data were also supported by the ability of LTD4 to activate the Rac GDP/GTP exchange factor Vav2. Further, LTD4 triggered a 3-fold transient increase in phosphatidylinositol 3-kinase (PI3K) phosphorylation, a possible upstream activator of the Vav2/Rac signaling pathway. The activation of Rac was blocked by the PI3K inhibitors LY294002 and wortmannin and by transfection of a kinase-negative mutant of PI3K or a dominant-negative form of Vav2. Furthermore, Rac was found to co-localize with actin in LTD4-generated membrane ruffles that were formed by a PI3K-dependent mechanism. In accordance, the inhibition of the PI3K and Rac signaling pathway also blocked the LTD4-induced migration of the intestinal cells. The present data reveal that an inflammatory mediator such as LTD4 cannot only increase proliferation and survival of non-transformed intestinal epithelial cells but also, via a PI3K/Rac signaling pathway, trigger a motile response in such cells. These data demonstrate the capacity of inflammatory mediators to participate in the process by which inflammatory bowel conditions increase the risk for colon cancer development.  相似文献   

2.
Renewal of the gastrointestinal epithelium involves a coordinated process of terminal differentiation and programmed cell death. Integrins have been implicated in the control of apoptotic processes in various cell types. Here we examine the role of integrins in the regulation of apoptosis in gastrointestinal epithelial cells with the use of a rat small intestinal epithelial cell line (RIE1) as a model. Overexpression of the integrin alpha5 subunit in RIE1 cells conferred protection against several proapoptotic stimuli. In contrast, overexpression of the integrin alpha2 subunit had no effect on cell survival. The antiapoptotic effect of the alpha5 subunit was partially retained by a mutated version that had a truncation of the cytoplasmic domain. The antiapoptotic effects of the full-length or truncated alpha5 subunit were reversed upon treatment with inhibitors of phosphatidylinositol 3-kinase (PI-3-kinase), suggesting that the alpha5beta1 integrin might interact with the PI-3-kinase/Akt survival pathway. When cells overexpressing alpha5 were allowed to adhere to fibronectin, there was a moderate activation of protein kinase B (PKB)/Akt, whereas no such effect was seen in alpha2-overexpressing cells adhering to collagen. Furthermore, in cells overexpressing alpha5 and adhering to fibronectin, there was a dramatic enhancement of the ability of growth factors to stimulate PKB/Akt; again, this was not seen in cells overexpressing alpha2 subunit and adhering to collagen or fibronectin. Expression of a dominant negative version of PKB/Akt in RIE cells blocked to ability of alpha5 to enhance cell survival. Thus, the alpha5beta1 integrin seems to protect intestinal epithelial cells against proapoptotic stimuli by selectively enhancing the activity of the PI-3-kinase/Akt survival pathway.  相似文献   

3.
Carbon monoxide (CO), previously considered a toxic waste product of heme catabolism, is emerging as an important gaseous molecule. In addition to its important role in neurotransmission, exogenous CO protects against vascular injury, transplant rejection, and acute lung injury. However, little is known regarding the precise signaling mechanisms of CO. We have recently shown that CO attenuates endothelial cell apoptosis during anoxia-reoxygenation injury by activating MKK3/p38alpha mitogen-activated protein kinase (MAPK) pathways. Our current study is the first to demonstrate that CO can differentially modulate STAT1 and STAT3 activation and, specifically, that STAT3 activation by CO is responsible for the anti-apoptotic effect in endothelial cells. In addition, we show that the anti-apoptotic effects of CO depend upon both phosphatidylinositol 3-kinase/Akt and p38 MAPK signaling pathways in endothelial cells, whereas previous reports have implicated only the MKK3/p38 MAPK pathway. Using chemical inhibitors and dominant negative constructs, we show that CO enhances STAT3 activation via phosphatidylinositol 3-kinase/Akt and p38 MAPK pathways with subsequent attenuation of Fas expression and caspase 3 activity. These data highlight the anti-apoptotic signaling mechanisms of CO and, importantly, delineate potential therapeutic strategies to prevent ischemia-reperfusion or anoxia-reoxygenation injury in the vasculature.  相似文献   

4.
In accordance with our recent results obtained with cultured rat hepatocytes [Fujioka, T. & Ui, M. (2001) Eur. J. Biochem. 268, 25-34], epidermal growth factor (EGF) gave rise to transient tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-2), thereby activating the bound phosphatidylinositol 3-kinase in human epidermoid carcinoma A431 cells normally abundant in EGF receptors (EGFR) and Chinese hamster ovary (CHO) cells transfected with full-length EGFR. These actions of EGF, although much smaller in magnitude than those of insulin or IGF-I in the same cells, were accompanied by tyrosine phosphorylation of EGFR rather than insulin or IGF-I receptors, never observed in wild-type CHO cells expressing no EGFR, and totally inhibited by an inhibitor of EGFR kinase, AG1478, that was without effect on insulin or IGF-I actions. Recombinant IRS-1 was phosphorylated on tyrosines upon incubation with purified EGFR from A431 cells and 32P-labeled ATP. When CHO cells were transfected with C-terminal truncated EGFR lacking three NPXY motifs responsible for direct binding to phosphotyrosine-binding domains of IRSs, no effect of EGF could be observed. We suggest that tyrosine phosphorylation of IRS-1 or IRS-2 could mediate EGFR-induced activation of phosphatidylinositol 3-kinase in mammalian cells.  相似文献   

5.
At present little is known of the biochemical machinery controlling transport of newly synthesized lysosomal hydrolases from the trans- Golgi network (TGN) to endosomes. The demonstration that Vps34p (a protein required for targeting soluble hydrolases to the vacuole in Saccharomyces cerevisiae) is a phosphatidylinositol 3-kinase (PI3-K) suggested the possibility that a homologous enzyme might be involved in the equivalent step in mammalian cells. Using the PI3-K inhibitors wortmannin and LY294002, I provide evidence to support this hypothesis. Treatment of K-562 cells with wortmannin induced secretion of procathepsin D, with half-maximal inhibition of accurate targeting to lysosomes at 10-20 nM. Kinetic analysis indicated that a late Golgi (TGN) step was affected, and that other constitutive vesicular transport events were not. The M6P recognition signal was still generated in the presence of wortmannin suggesting that the drug was directly inhibiting export of the receptor-ligand complex from the TGN, while removal of the drug led to a rapid restoration of accurate sorting. At the concentrations used, wortmannin and LY294002 are presently accepted to be specific inhibitors of PI3-K. I conclude that these data implicate such an enzyme in the trafficking of M6P-receptor- ligand complexes from the TGN towards lysosomes.  相似文献   

6.
7.
Although substantial studies have begun to explore the regulation of phosphatidylinositol 3-kinase/Akt cascade by different signalling pathways, whether protein kinase C (PKC) activity plays a crucial role remains as yet unclear. In this study, we found that in A549 and HEK293 cells non-selective PKC inhibitors Ro 31-8220 and bisindolylmaleimide VIII, and PKCbeta inhibitor LY 379196, caused Akt/PKB phosphorylation at Ser 473 and increased the upstream activator, integrin-linked kinase (ILK) activity. The increased Akt phosphorylation was blocked by phosphatidylinositol 3-kinase inhibitor wortmannin and the newly identified PIP(3)-dependent kinases (PDK) inhibitor SB 203580. In contrast to the Akt stimulation caused by PKC inhibitors, PMA attenuated Akt/PKB phosphorylation. We also found that this stimulating effect on Akt phosphorylation by PKC inhibitors was not the result of phosphatase inhibition, since treatment with PP2A, PP2B and tyrosine phosphatase inhibitors (okadaic acid, FK506 and sodium orthovanadate, respectively) had no effect. We conclude that phosphatidylinositol 3-kinase/Akt signalling pathway is regulated by PKC in a negative manner.  相似文献   

8.
In the present study, we investigated whether Akt is involved in insulin-like growth factor-I (IGF-I)-stimulated activity of alkaline phosphatase, a marker of mature osteoblast phenotype, in osteoblast-like MC3T3-E1 cells. IGF-I induced the phosphorylation of Akt in these cells. Akt inhibitor significantly suppressed the IGF-I-stimulated alkaline phosphatase activity. The phosphorylation of Akt induced by IGF-I was reduced by the Akt inhibitor. LY294002 and wortmannin, inhibitors of phosphatidylinositol 3-kinase, significantly suppressed the IGF-I-induced alkaline phosphatase activity. The phosphorylation of Akt induced by IGF-I was markedly reduced by LY294002 and wortmannin. These results strongly suggest that phosphatidylinositol 3-kinase/Akt plays a role in the IGF-I-stimulated alkaline phosphatase activity in osteoblasts.  相似文献   

9.
10.
11.
Synovial fibroblasts (SFs) of rheumatoid arthritis (RA) are phenotypically aggressive, typically progressing into arthritic cartilage degradation. Throughout our study, we made explorations into the effects of microRNA-135a (miR-135a) on the SFs involved in RA by mediating the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway via regulation of phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2). The expression of PI3K was higher, the expression of PIK3R2 was lower, and AKT was phosphorylated in the RA synovial tissues, relative to the levels found in the normal synovial tissues. We predicted miR-135a to be a candidate miR targeting PIK3R2 using an online website, microRNA.org, which was verified with a dual-luciferase reporter gene assay. Subsequently, high miR-135a expression was observed in RA synovial tissues. To study the effect of the interaction between miR-135a and PIK3R2 in RA, the SFs isolated from RA samples were cultured and transfected with mimic, inhibitor, and small interfering RNA. The proliferation, invasion, and apoptosis of the SFs were detected after the transfection. The cells transfected with miR-135a inhibitor showed inhibited cell proliferation, migration, and invasion, while also displaying promoted cell apoptosis, G0/G1 cell ratio, and decreased S cell ratio, through upregulation of PIK3R2 and inactivation of the PI3K/AKT signaling pathway. These findings provided evidence that downregulation of miR-135a inhibits proliferation, migration, and invasion and promotes apoptosis of SFs in RA by upregulating the PIK3R2 coupled with inactivating the PI3K/AKT signaling pathway. The downregulation of miR-135a might be a potential target in the treatment of RA.  相似文献   

12.
The type I phosphatidylinositol 4-phosphate 5-kinases (PI4P5K) phosphorylate phosphatidylinositol 4-phosphate [PI(4)P] to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PI(4,5)P2 has been implicated in signal transduction, receptor mediated endocytosis, vesicle trafficking, cytoskeletal structure, and membrane ruffling. However, the specific type I enzymes associated with the production of PI(4,5)P2 for the specific cellular processes have not been rigorously defined. Murine PI4P5K type Ibeta (mPIP5K-Ibeta) was implicated in receptor mediated endocytosis through the isolation of a truncated and inactive form of the enzyme that blocked the ligand-dependent downregulation of the colony-stimulating factor-1 receptor. The present study shows that enforced expression of mPIP5K-Ibeta in 293T cells resulted in the accumulation of large vesicles that were linked to an endosomal pathway. Similar results were obtained after the expression of the PI(4,5)P2-binding pleckstrin homology (PH) domain of phospholipase-Cdelta (PLC-delta). Analysis of the conserved domains of mPIP5K-Ibeta led to the identification of dimerization domains in the N- and C-terminal regions. Enforced expression of the individual dimerization domains interfered with the proper subcellular localization of mPIP5K-Ibeta and the PLC-delta-PH domain and blocked the accumulation of the endocytic vesicles induced by these proteins. In addition to regulating early steps in endocytosis, these results suggest that mPIP5K-Ibeta acts through PI(4,5)P2 to regulate endosomal trafficking and/or fusion.  相似文献   

13.
14.
15.
The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs.   总被引:6,自引:0,他引:6  
Phosphatidylinositol (PtdIns) 3-kinase is an enzyme involved in cellular responses to growth factors. Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyrano-4-one), a naturally occuring bioflavinoid, was found to inhibit PtdIns 3-kinase with an IC50 of 1.3 micrograms/ml (3.8 microM); inhibition appears to be directed towards the ATP binding site of the kinase. Analogs of quercetin were also investigated as PtdIns 3-kinase inhibitors, with the most potent compounds exhibiting IC50's in the range of 1.7-8.4 micrograms/ml (5-19 microM). In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 greater than 30 micrograms/ml). These findings suggest that flavinoids may serve as potent inhibitors of PtdIns 3-kinase. Furthermore, the enzyme is much more sensitive to substituents at the 3-position of the flavinoid ring than are other protein and PtdIns kinases, suggesting that specific inhibitors of PtdIns 3-kinase can be developed to explore the biological role of the enzyme in cellular proliferation and growth factor response.  相似文献   

16.
Using loss-of-function mutants of Ros and inducible epidermal growth factor receptor-Ros chimeras we investigated the role of various signaling pathways in Ros-induced cell transformation. Inhibition of the mitogen-activated protein kinase (MAPK) pathway with the MEK (MAP/extracellular signal-regulated kinase kinase) inhibitor PD98059 had little effect on the Ros-induced monolayer and anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells even though more than 70% of the MAPK was inhibited. In contrast, inhibiting the phosphatidylinositol 3-kinase (PI3K) pathway with the drug LY294002, a dominant negative mutant of PI3K, Deltap85, or the phosphatidylinositol phosphatase PTEN (phosphatase and tensin homologue deleted in chromosome ten) resulted in a dramatic reduction of v-Ros- and epidermal growth factor receptor-Ros-promoted anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells, respectively. Parallel and downstream components of PI3K signaling such as the Rho family GTPases (Rac, Rho, Cdc42) and the survival factor Akt were all shown to contribute to Ros-induced anchorage-independent growth, although Rac appeared to be less important for Ros-induced colony formation in NIH3T3 cells. Furthermore, the transformation-attenuated v-Ros mutants F419 and DI could be complemented by constitutively active mutants of PI3K and Akt. Finally, we found that overexpressing a constitutively active mutant of STAT3 (STAT3C) conferred a resistance to the inhibition of Ros-induced anchorage-independent growth by LY294002, suggesting a possible overlap of functions between PI3K and STAT3 signaling in mediating Ros-induced anchorage-independent growth.  相似文献   

17.
Most, if not all, cytokines activate phosphatidylinositol 3-kinase (PI-3K). Although many cytokine receptors have direct binding sites for the p85 subunit of PI-3K, others, such as the interleukin-3 (IL-3) receptor beta common chain (betac) and the IL-2 receptor beta chain (IL-2Rbeta), lack such sites, leaving the mechanism by which they activate PI-3K unclear. Here, we show that the protooncoprotein Shc, which promotes Ras activation by recruiting the Grb2-Sos complex in response to stimulation of cytokine stimulation, also signals to the PI-3K/Akt pathway. Analysis of Y-->F and "add-back" mutants of betac shows that Y577, the Shc binding site, is the major site required for Gab2 phosphorylation in response to cytokine stimulation. When fused directly to a mutant form of IL-2Rbeta that lacks other cytoplasmic tyrosines, Shc can promote Gab2 tyrosyl phosphorylation. Mutation of the three tyrosyl phosphorylation sites of Shc, which bind Grb2, blocks the ability of the Shc chimera to evoke Gab2 tyrosyl phosphorylation. Overexpression of mutants of Grb2 with inactive SH2 or SH3 domains also blocks cytokine-stimulated Gab2 phosphorylation. The majority of cytokine-stimulated PI-3K activity associates with Gab2, and inducible expression of a Gab2 mutant unable to bind PI-3K markedly impairs IL-3-induced Akt activation and cell growth. Experiments with the chimeric receptors indicate that Shc also signals to the PI-3K/Akt pathway in response to IL-2. Our results suggest that cytokine receptors lacking direct PI-3K binding sites activate Akt via a Shc/Grb2/Gab2/PI-3K pathway, thereby regulating cell survival and/or proliferation.  相似文献   

18.
Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis. Here we report the validation of an immunocytochemical method to detect changes in PI3K activity, using a recently developed monoclonal antibody to PIP3, in paraformaldehyde-fixed bovine aortic endothelial cells (BAECs) in culture and in hepatocytes of intact rat liver. Treatment with either insulin or leptin increased BAEC PIP3 immunoreactivity, and these effects were blocked by pretreatment with PI3K inhibitors. Furthermore, infusion of insulin into the hepatic portal vein of fasted rats caused an increase of PIP3 immunostaining in hepatocytes that was associated with increased serine phosphorylation of the downstream signaling molecule protein kinase B/Akt (PKB/Akt). We conclude that immunocytochemical PIP3 staining can detect changes in PI3K activation induced by insulin and leptin in cell culture and intact liver.  相似文献   

19.
The goals of this study were 2-fold: 1) to determine whether stimulation of Eph B4 receptors promotes microvascular endothelial cell migration and/or proliferation, and 2) to elucidate signaling pathways involved in these responses. The human endothelial cells used possessed abundant Eph B4 receptors with no endogenous ephrin B2 expression. Stimulation of these receptors with ephrin B2/Fc chimera resulted in dose- and time-dependent phosphorylation of Akt. These responses were inhibited by LY294002 and ML-9, blockers of phosphatidylinositol 3-kinase (PI3K) and Akt, respectively. Eph B4 receptor activation increased proliferation by 38%, which was prevented by prior blockade with LY294002, ML-9, and inhibitors of protein kinase G (KT5823) and MEK (PD98059). Nitrite levels increased over 170% after Eph B4 stimulation, indicating increased nitric oxide production. Signaling of endothelial cell proliferation appears to be mediated by a PI3K/Akt/endothelial nitric-oxide synthase/protein kinase G/mitogen-activated protein kinase cascade. Stimulation with ephrin B2 also increased migration by 63% versus controls. This effect was inhibited by blockade with PP2 (Src inhibitor), LY294002 or ML-9 but was unaffected by the PKG and MEK blockers. Eph B4 receptor stimulation increased activation of both matrix metalloproteinase-2 and -9. The results from these studies indicate that Eph B4 stimulates migration and proliferation and may play a role in angiogenesis.  相似文献   

20.
The Saccharomyces cerevisiae FAB1 gene encodes the sole phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinase responsible for synthesis of the polyphosphoinositide PtdIns(3,5)P(2). VAC7 encodes a 128-kDa transmembrane protein that localizes to vacuolar membranes. Both vac7 and fab1 null mutants have dramatically enlarged vacuoles and cannot grow at elevated temperatures. Additionally, vac7Delta mutants have nearly undetectable levels of PtdIns(3,5)P(2), suggesting that Vac7 functions to regulate Fab1 kinase activity. To test this hypothesis, we isolated a fab1 mutant allele that bypasses the requirement for Vac7 in PtdIns(3,5)P(2) production. Expression of this fab1 allele in vac7Delta mutant cells suppresses the temperature sensitivity, vacuolar morphology, and PtdIns(3,5)P(2) defects normally exhibited by vac7Delta mutants. We also identified a mutant allele of FIG4, whose gene product contains a Sac1 polyphosphoinositide phosphatase domain, which suppresses vac7Delta mutant phenotypes. Deletion of FIG4 in vac7Delta mutant cells suppresses the temperature sensitivity and vacuolar morphology defects, and dramatically restores PtdIns(3,5)P(2) levels. These results suggest that generation of PtdIns(3,5)P(2) by the Fab1 lipid kinase is regulated by Vac7, whereas turnover of PtdIns(3,5)P(2) is mediated in part by the Sac1 polyphosphoinositide phosphatase family member Fig4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号