首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is much evidence indicating the importance in gene regulation of the positions of nucleosomes with respect to DNA sequence. Low resolution chromatin structures have been described for many genes, but there is a dearth of detailed high resolution chromatin structures. In the cases where they are available, high resolution maps have revealed much more complex chromatin structures, with multiple alternative nucleosome positions. The discovery that ATP-dependent chromatin remodelling machines are recruited to genes, with their ability to mobilise nucleosomes on DNA and to alter nucleosomal conformation, emphasises the necessity for obtaining high resolution nucleosome maps, so that the details of these remodelling reactions can be defined in vivo. Here, we describe protocols for purifying plasmid chromatin from cells of the yeast Saccharomyces cerevisiae and for mapping nucleosome positions on the plasmid using the monomer extension mapping method. This method requires purified chromatin, but is capable of mapping relatively long stretches of chromatin in great detail. Typically, it reveals very complex chromatin structures.  相似文献   

2.
3.
Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo.  相似文献   

4.
In order to elucidate the influence of histone acetylation upon nucleosomal DNA length and nucleosome position, we compared nucleosome maps of the following three yeast strains; strain BY4741 (control), the elp3 (one of histone acetyltransferase genes) deletion mutant, and the hos2 (one of histone deactylase genes) deletion mutant of Saccharomyces cerevisiae. We sequenced mononucleosomal DNA fragments after treatment with micrococcal nuclease. After mapping the DNA fragments to the genome, we identified the nucleosome positions. We showed that the distributions of the nucleosomal DNA lengths of the control and the hos2 disruptant were similar. On the other hand, the distribution of the nucleosomal DNA lengths of the elp3 disruptant shifted toward shorter than that of the control. It strongly suggests that inhibition of Elp3-induced histone acetylation causes the nucleosomal DNA length reduction. Next, we compared the profiles of nucleosome mapping numbers in gene promoter regions between the control and the disruptant. We detected 24 genes with low conservation level of nucleosome positions in promoters between the control and the elp3 disruptant as well as between the control and the hos2 disruptant. It indicates that both Elp3-induced acetylation and Hos2-induced deacetylation influence the nucleosome positions in the promoters of those 24 genes. Interestingly, in 19 of the 24 genes, the profiles of nucleosome mapping numbers were similar between the two disruptants.  相似文献   

5.
F Bernardi  M Zatchej    F Thoma 《The EMBO journal》1992,11(3):1177-1185
Yeast genes, such as URA3, are chromatin units characterized by positioned nucleosomes and flanking nuclease sensitive regions (NSRs). To investigate the structural determinants at the chromatin level in vivo, the URA3 gene was dissected into three parts (U5', Umid and U3'), and the chromatin structures of the individual parts were analysed after insertion into minichromosomes and after chromatin assembly in vivo in Saccharomyces cerevisiae. While nucleosome positions were altered on Umid, the 5'-end and the 3'-end of URA3 maintained their native structures (a positioned nucleosome and a NSR each) independent of the site or orientation of insertion. This suggests that the chromatin unit of the native URA3 gene is dominated by strong protein boundaries at the 5'- and 3'-ends. In an alternative approach, we investigated whether nucleosome positions or NSRs were maintained when the whole URA3 gene was placed on a shuttle vector and assembled into chromatin by Schizosaccharomyces pombe providing different proteins, but the same nucleosomal spacing. In a complementary exchange experiment, the ade6 gene of S.pombe was shuttled to S.cerevisiae. In spite of a general conservation of histone proteins and nucleosome core structures, neither nucleosome positions nor NSRs were maintained in the heterologous background. The results demonstrate that chromatin structures are species specific and that the structural boundaries of yeast genes may be dominated by strong species specific protein-DNA interactions.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Using genome-wide maps of nucleosome positions in yeast, we have analyzed the influence of chromatin structure on the molecular evolution of genomic DNA. We have observed, on average, 10-15% lower substitution rates in linker regions than in nucleosomal DNA. This widespread local rate heterogeneity represents an evolutionary footprint of nucleosome positions and reveals that nucleosome organization is a genomic feature conserved over evolutionary timescales.  相似文献   

19.
20.
The coding sequences of the yeast 35S rDNA gene and of the yeast galactokinase gene both show clear staphylococcal nuclease nucleosome profiles under conditions in which the gene is inactive (galactokinase) or less active (rDNA). Under conditions of more active expression, the galactokinase gene shows marked smearing in the digestion profiles. The rDNA gene shows a qualitatively similar change in digestion patterns. There is a typical nucleosomal DNase I ladder on the coding sequences of both genes, regardless of the state of activity. In contrast to the coding sequences, the rDNA upstream region chromatin shows a nonnucleosomal profile. The nonnucleosomal character is more pronounced when the gene is more active. On the galactokinase upstream region chromatin, there is a nucleosomal structure, with some minor modifications, when the gene is inactive and a clear nonnucleosomal structure when the gene is expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号